设无穷数列
的首项
,前
项和为
(
),且点
在直线
上(
为与
无关的正实数).
(1)求证:数列
(
)为等比数列;
(2)记数列
的公比为
,数列
满足
,设
,求数列
的前
项和
;
(3)(理)若(1)中无穷等比数列
(
)的各项和存在,记
,求函数
的值域.
(1)证明见解析;(2)
;(3)
.
解析试题分析:(1)把已知条件变形为
,要化为数列项的关系,一般方法是用
代
得
,两式相减,得
,从而得前后项比
为常数,只是还要注意看看是不是有
,如有则可证得
为等比数列;(2)由
定义可知数列
是等差数列,
(
是数列
公差),从而数列
也是等差数列,其前
和易得,这说明我们在求数列和时,最好能确定这个数列是什么数列;(3)首先无穷等比数列
的和存在说明公比
满足
,从而得出
,无穷等比数列的和公式得
,这是一次分式函数,其值域采用分离分式法,即
,易得
.
试题解析:(1)由已知,有
,
当
时,
; 2分
当
时,有
,
两式相减,得
,即
,
综上,
,故数列
是公比为
的等比数列; 4分
(2)由(1)知,
,则![]()
![]()
于是数列
是公差
的等差数列,即
, 7分
则![]()
![]()
=
10分
(3)(理)由
解得:
。 12分
14分
,当
时,
,函数
的值域为
。 16分
考点:(1)数列的前
项和
与
的关系,等比数列的定义;(2)等差数列的前
项和;(3)无穷等比数列的和及一次分式函数的值域.
科目:高中数学 来源: 题型:解答题
已知各项均为正数的数列{an}的前n项和为Sn,首项为a1,且
,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)若
=
,设cn=
,求数列{cn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.
(1)求数列{an}的通项公式;
(2)是否存在正整数n,使得Sn≥2 013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在等差数列{an}中,a3+a4+a5=84,a9=73.
(1)求数列{an}的通项公式;
(2)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知各项均不相等的等差数列{an}的前5项和为S5=35,且a1+1,a3+1,a7+1成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列
的前n项和,问是否存在常数m,使Tn=m
,若存在,求m的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com