精英家教网 > 高中数学 > 题目详情

已知数列的前项和为,且的等差中项,等差数列满足.
(1)求数列的通项公式; 
(2)设,数列的前项和为,求的取值范围.

(1);(2)

解析试题分析:(1)由已知得,再利用的关系,将其转化为关于的递推式,得,故数列是公比为2的等比数列,进而求其通项公式,等差数列中,由于知道两项,先求首项和公差,进而求通项公式;(2)求数列前n项和,先考虑其通项公式,根据通项公式的特点,选择相应的求和方法,该题,故可采取裂项相消法,求得,看作自变量为的函数,进而求值域得的取值范围.
试题解析:(1)∵的等差中项,∴,当时,,∴
时,, ∴,即  
∴数列是以为首项,为公比的等比数列,∴,设的公差为
,∴,∴
(2),∴
,∵ ,∴
,∴数列是一个递增数列  ∴.
综上所述,
考点:1、等差数列的通项公式和等差中项;2、等比数列的通项公式;3、数列求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设无穷数列的首项,前项和为),且点在直线上(为与无关的正实数).
(1)求证:数列)为等比数列;
(2)记数列的公比为,数列满足,设,求数列的前项和
(3)(理)若(1)中无穷等比数列)的各项和存在,记,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的每一项都是正数,,,且成等差数列,成等比数列,.
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)记,证明:对一切正整数,有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足是数列 的前项和.
(1)若数列为等差数列.
(ⅰ)求数列的通项
(ⅱ)若数列满足,数列满足,试比较数列 前项和项和的大小;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

)已知数列{an}是首项为-1,公差d 0的等差数列,且它的第2、3、6项依次构成等比数列{bn}的前3项。
(1)求{an}的通项公式;
(2)若Cn=an·bn,求数列{Cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

大学生自主创业已成为当代潮流。长江学院大三学生夏某今年一月初向银行贷款20000元作开店资金,全部用作批发某种商品,银行贷款的年利率为6%,约定一年后一次还清贷款。已知夏某每月月底获得的利润是该月月初投人资金的15%,每月月底需要交纳个人所得税为该月所获利润的20%,当月房租等其他开支1500元,余款作为资金全部投入批发该商品再经营,如此继续,假定每月月底该商品能全部卖出。
(1)设夏某第个月月底余元,第个月月底余元,写出的值并建立的递推关系式;
(2)预计年底夏某还清银行贷款后的纯收入。(参考数据:1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10﹣11,0.1212≈8.92×10﹣12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是各项均为非零实数的数列的前项和,给出如下两个命题上:
命题是等差数列;命题:等式对任意)恒成立,其中是常数。
⑴若的充分条件,求的值;
⑵对于⑴中的,问是否为的必要条件,请说明理由;
⑶若为真命题,对于给定的正整数)和正数M,数列满足条件,试求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列中,公差,其前项和为,且满足:
(1)求数列的通项公式;
(2)令,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前n项和为,且.
(1)求数列的通项;(2)设,求数列的前n项和.

查看答案和解析>>

同步练习册答案