设
是各项均为非零实数的数列
的前
项和,给出如下两个命题上:
命题
:
是等差数列;命题
:等式
对任意
(
)恒成立,其中
是常数。
⑴若
是
的充分条件,求
的值;
⑵对于⑴中的
与
,问
是否为
的必要条件,请说明理由;
⑶若
为真命题,对于给定的正整数
(
)和正数M,数列
满足条件
,试求
的最大值。
(1)
;(2)是,证明见解析;(3)
.
解析试题分析:(1)
是等差数列,和
可以用裂项相消法求出,等式
就变为关于
的恒等式,利用恒等式的知识可求出
;(2)等式
对任意
(
)恒成立,等式左边是一个和式,相当于一个新数列的前
项和,处理方法是把式子中的
用
代换后,两式相减,本题中得到
,这个式子可整理为
,这是关于
的恒等式,因此![]()
![]()
,即
, 这就说明
为等差数列,得证,解题时还要注意对
的初始值是否成立;(3)已知条件为等差数列
中
,要求
的最大值,为了能对数列
进行处理,我们利用三角换元法,对已知条件变换,设设
,(
),这样数列的公差
就可求出,从而也就能求出前
项和
,
,再利用三角函数
的最大值为
,就能求出
的最大值.
试题解析:(1)设
的公差为
,则原等式可化为
,所以
,
即
对于
恒成立,所以
. 4分
(2)当
时,假设
为
的必要条件,即“若
①对于任意的
(
)恒成立,则
为等差数列”,
当
时,
显然成立, 6分
当
时,
②,由①-②得:
,
即
③,
当
时,
,即
成等差数列,
当
时,
④,由③④得
,所以
为等差数列,即
是
的必要条件. 10分
(3)由
,可设
,所以
.
设数列
的公差为
,则
,所以
,
所以
,![]()
![]()
,
所以
的最大值为![]()
![]()
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知直角
的三边长
,满足
(1)已知
均为正整数,且
成等差数列,将满足条件的三角形的面积从小到大排成一列
,且
,求满足不等式
的所有
的值;
(2)已知
成等比数列,若数列
满足
,证明数列
中的任意连续三项为边长均可以构成直角三角形,且
是正整数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知:等差数列{an}中,a3+a4=15,a2a5=54,公差d<0.
(I)求数列{an}的通项公式an;
(II)求数列的前n项和Sn的最大值及相应的n的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com