精英家教网 > 高中数学 > 题目详情

已知:等差数列{an}中,a3+a4=15,a2a5=54,公差d<0.
(I)求数列{an}的通项公式an
(II)求数列的前n项和Sn的最大值及相应的n的值.

(1);(2)或11时,取得最大值,最大值为55.

解析试题分析:(1)根据等差数列的通项公式由a3+a4=15,a2a5=54得一方程组,解这个方程组得公差和首项,从而得数列{an}的通项公式an.
(2)等差数列的前n项和Sn是关于n的二次式,将这个二次式配方即可得最大值.
试题解析:(1)为等差数列,
 解得(因d<0,舍去)
                            6分
(2)
                     9分
,对称轴为,故当或11时,
取得最大值,最大值为55                   12分
考点:等差数列

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列中满足.
(1)求和公差
(2)求数列的前10项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

)已知数列{an}是首项为-1,公差d 0的等差数列,且它的第2、3、6项依次构成等比数列{bn}的前3项。
(1)求{an}的通项公式;
(2)若Cn=an·bn,求数列{Cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是各项均为非零实数的数列的前项和,给出如下两个命题上:
命题是等差数列;命题:等式对任意)恒成立,其中是常数。
⑴若的充分条件,求的值;
⑵对于⑴中的,问是否为的必要条件,请说明理由;
⑶若为真命题,对于给定的正整数)和正数M,数列满足条件,试求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列中,已知时,.数列满足:
(1)证明:为等差数列,并求的通项公式;
(2)记数列的前项和为,若不等式成立(为正整数).求出所有符合条件的有序实数对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列中,公差,其前项和为,且满足:
(1)求数列的通项公式;
(2)令,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足,且对任意非负整数均有:.
(1)求
(2)求证:数列是等差数列,并求的通项;
(3)令,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,且,数列满足,且点在直线上.
(1)求数列的通项公式;
(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列,公差不为零,,且成等比数列;
⑴求数列的通项公式;
⑵设数列满足,求数列的前项和.

查看答案和解析>>

同步练习册答案