已知数列
是等差数列,且![]()
(1)求数列
的通项公式 (2)令
,求数列
前n项和![]()
科目:高中数学 来源: 题型:解答题
设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=
,n∈N*,其中c为实数.
(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列
的前n项和,若Tn≤
¨对
恒成立,求实数
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知等差数列
的首项为
,公差为
,等比数列
的首项为
,公比为
,
.
(1)求数列
与
的通项公式;
(2)设第
个正方形的边长为
,求前
个正方形的面积之和
.
(注:
表示
与
的最小值.)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
等差数列{an}的各项均为正数,其前n项和为Sn,满足2S2=a2(a2+1),且a1=1.
(1)求数列{an}的通项公式.
(2)设bn=
,求数列{bn}的最小值项.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}满足a1=1,an-an-1+2anan-1=0(n∈N*,n>1).
(1)求证:数列
是等差数列并求数列{an}的通项公式;
(2)设bn=anan+1,求证:b1+b2+…+bn<
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设无穷数列
的首项
,前
项和为
(
),且点
在直线
上(
为与
无关的正实数).
(1)求证:数列
(
)为等比数列;
(2)记数列
的公比为
,数列
满足
,设
,求数列
的前
项和
;
(3)(理)若(1)中无穷等比数列
(
)的各项和存在,记
,求函数
的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com