精英家教网 > 高中数学 > 题目详情

已知数列是等差数列,且
(1)求数列的通项公式  (2)令,求数列前n项和

(1);(2)

解析试题分析:(1)数列{an}是等差数列,且a1=2,设公差为d,代入a1+a2+a3=12,求出d,求出数列{an}的通项公式;
(2)数列{an}的通项公式为an=n+2n,可以利用数列的分组求和法,分别求一个等差数列与一个等比数列的前n项和.
试题解析:(1)由已知         5分
(2)

         10分
考点:(1)等差数列;(2)数列求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn,n∈N*,其中c为实数.
(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列的前n项和,若Tn¨对恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项为,公差为,等比数列的首项为,公比为.
(1)求数列的通项公式;
(2)设第个正方形的边长为,求前个正方形的面积之和.
(注:表示的最小值.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列{an}的各项均为正数,其前n项和为Sn,满足2S2=a2(a2+1),且a1=1.
(1)求数列{an}的通项公式.
(2)设bn=,求数列{bn}的最小值项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足a1=1,an-an-1+2anan-1=0(n∈N*,n>1).
(1)求证:数列是等差数列并求数列{an}的通项公式;
(2)设bn=anan+1,求证:b1+b2+…+bn< .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和
(1)求数列的通项公式,并证明是等差数列;
(2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设无穷数列的首项,前项和为),且点在直线上(为与无关的正实数).
(1)求证:数列)为等比数列;
(2)记数列的公比为,数列满足,设,求数列的前项和
(3)(理)若(1)中无穷等比数列)的各项和存在,记,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的每一项都是正数,,,且成等差数列,成等比数列,.
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)记,证明:对一切正整数,有.

查看答案和解析>>

同步练习册答案