精英家教网 > 高中数学 > 题目详情
19.若关于x的不等式x2+mx+m-1≥0恒成立,则实数m=2.

分析 根据二次函数的性质得到△=0,解出m的值即可.

解答 解:若关于x的不等式x2+mx+m-1≥0恒成立,
则△=m2-4(m-1)=0,解得:m=2,
故答案为:2.

点评 本题考察了二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.建造一个容积为240m3,深为5m的长方体无盖蓄水池,池壁的造价为180元/m2,池底的造价为350元/m2,如何设计水池的长与宽,才能使水池的总造价为42000元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知过球面上三点A,B,C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=3cm,则球的体积是$\frac{32π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将正整数排列如下:则在表中数字2013出现在(  )
A.第44行第78列B.第45行第78列C.第44行第77列D.第45行第77列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆C1:x2-2x+y2=0,圆C2:(x+3)2+(y-4)2=1,若过点C1的直线l被圆C2所截得的弦长为$\frac{6}{5}$,则直线l的方程为4x+3y-4=0或3x+4y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)设a,b,c均为正数,求证:$a+\frac{1}{b},b+\frac{1}{c},c+\frac{1}{a}$中至少有一个不小于2;
(2)设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0(其中f′(x)是f(x)导函数).已知g1(x)=g(x),gn+1(x)=g(gn(x)n∈N*
(1)求g1(x),g2(x);
(2)猜想gn(x)表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=log3(2x-1)的定义域为($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$0<α<\frac{π}{2}$,则点(tanα,cosα)位于第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某品牌汽车4S店,对该品牌旗下的A型、B型、C型汽车进行维修保养,每辆车一年内需要维修的人工费用为200元,汽车4S店记录了该品牌三种类型汽车各100辆到店维修的情况,整理得下表:
车型A型B型C型
频数204040
假设该店采用分层抽样的方法从上维修的100辆该品牌三种类型汽车中随机抽取10辆进行问卷回访.
(1)从参加问卷到访的10辆汽车中随机抽取两辆,求这两辆汽车来自同一类型的概率;
(2)某公司一次性购买该品牌A、B、C型汽车各一辆,记ξ表示这三辆车的一年维修人工费用总和,求ξ的分布列及数学期望(各型汽车维修的概率视为其需要维修的概率);
(3)经调查,该品牌A型汽车的价格与每月的销售量之间有如下关系:
价格(万元)2523.52220.5
销售量(辆)30333639
已知A型汽车的购买量y与价格x符合如下线性回归方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+80,若A型汽车价格降到19万元,请你预测月销售量大约是多少?

查看答案和解析>>

同步练习册答案