精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
sinπx
(x2+1)(x2-2x+2)
,对于下列命题:
①函数f(x)是奇函数;
②直线x=
1
2
是函数f(x)图象的对称轴;
③对任意x∈R,f(x)满足|f(x)|<1;
④对任意x∈(-1,0),函数f(x)的导数满足f′(x)<0.
其中正确命题为
 
(写出命题序号即可).
分析:①根据函数的解析式求得函数的定义域,根据奇函数的定义,验证f(-x)=-f(x),可知该命题的正误;
②根据轴对称图形的定义,在函数f(x)图象上任取点P(x,y),求出点P关于直线x=
1
2
的对称点是P′(1-x,y),验证点P′在函数的图象上即可;
③根据二次函数的最值和不等式的基本性质,可以求出x2+1≥1;x2-2x+2=(x-1)2+1≥1,注意等号成立的条件,从而求得
1
(x2+1)(x2-2x+2)
的范围,根据正弦函数的有界性,从而求得结论正确;
④对函数求导,求出f′(-
1
2
)<0,
lim
x→0
πcosπx[(x2+1)(x2-2x+2)]-sinπx[2x(x2-2x+2)+(x2+1)(2x-2)]
[(x2+1)(x2-2x+2)] 2
=2π>0,从而可知?x0∈(-1,0),函数f(x)的导数满足f′(x0)=0.可知该命题错误.
解答:解:①函数的定义域为R,f(-x)=
sin(-πx)
[(-x)2+1][(-x)2-2(-x)+2]
=
-sinπx
(x2+1)(x2+2x+2)
≠-f(x)
∴函数f(x)不是奇函数故①错;
②在函数f(x)图象上任取点P(x,y),则点P关于直线x=
1
2
的对称点是P′(1-x,y)
而f(1-x)=
sinπ(1-x)
[(1-x)2+1][(1-x)2-2(1-x)+2]
=
sinπx
(x2+1)(x2-2x+2)
=y
∴直线x=
1
2
是函数f(x)图象的对称轴;故②正确;
③∵x2+1≥1,当x=0时等号成立;x2-2x+2=(x-1)2+1≥1,当x=1时等号成立,
∴(x2+1)[(x-1)2+1]>1,∴0<
1
(x2+1)(x2-2x+2)
<1,
而|sinπx|≤1,∴
|sinπx|
(x2+1)(x2-2x+2)
<1,即|f(x)|<1;故③正确;
④f′(x)=
πcosπx[(x2+1)(x2-2x+2)]-sinπx[2x(x2-2x+2)+( x2+1)(2x-2)]
[(x2+1)(x2-2x+2)] 2

f′(-
1
2
)=
-(
1
4
+1+2)+(
1
4
+1)(-1-2)
[(
1
4
+1)(
1
4
+1+2)]
2
<0,
lim
x→0
f′(x)=
πcosπx[(x2+1)(x2-2x+2)]-sinπx[2x(x2-2x+2)+(x2+1)(2x-2)]
[(x2+1)(x2-2x+2)] 2
=2π>0,
?x0∈(-1,0),函数f(x)的导数满足f′(x0)=0.故④错
故正确命题为②③
故答案为:②③.
点评:本题考查函数的奇偶性的定义和对称性以及函数的值域的求法,导数的除法运算法则等知识,综合性强,考查灵活应用知识分析解决问题的能力,和运算能力,其中命题④计算量大,增加了试题的难度.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax+bsinx,当x=
π
3
时,取得极小值
π
3
-
3

(1)求a,b的值;
(2)对任意x1x2∈[-
π
3
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,试求实数m的取值范围;
(3)设直线l:y=g(x),曲线S:y=F(x),若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x),则称直线l与曲线S的“上夹线”.观察下图:

根据上图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并作适当的说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-blnx在(1,2]是增函数,g(x)=x-b
x
在(0,1)为减函数.
(1)求b的值;
(2)设函数φ(x)=2ax-
1
x2
是区间(0,1]上的增函数,且对于(0,1]内的任意两个变量s、t,f(s)≥?(t)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求满足该不等式的最大整数M;
(2)如果对任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案