ÒÑÖªº¯Êýf£¨x£©=ax+bsinx£¬µ±x=
¦Ð
3
ʱ£¬È¡µÃ¼«Ð¡Öµ
¦Ð
3
-
3
£®
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©¶ÔÈÎÒâx1£¬x2¡Ê[-
¦Ð
3
£¬
¦Ð
3
]
£¬²»µÈʽf£¨x1£©-f£¨x2£©¡Ümºã³ÉÁ¢£¬ÊÔÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©ÉèÖ±Ïßl£ºy=g£¨x£©£¬ÇúÏßS£ºy=F£¨x£©£¬ÈôÖ±ÏßlÓëÇúÏßSͬʱÂú×ãÏÂÁÐÁ½¸öÌõ¼þ£º¢ÙÖ±ÏßlÓëÇúÏßSÏàÇÐÇÒÖÁÉÙÓÐÁ½¸öÇе㣻¢Ú¶ÔÈÎÒâx¡ÊR¶¼ÓÐg£¨x£©¡ÝF£¨x£©£¬Ôò³ÆÖ±ÏßlÓëÇúÏßSµÄ¡°ÉϼÐÏß¡±£®¹Û²ìÏÂͼ£º

¸ù¾ÝÉÏͼ£¬ÊÔÍƲâÇúÏßS£ºy=mx-nsinx£¨n£¾0£©µÄ¡°ÉϼÐÏß¡±µÄ·½³Ì£¬²¢×÷Êʵ±µÄ˵Ã÷£®
·ÖÎö£º£¨1£©Çóµ¼Êýf¡ä£¨x£©£¬ÓÉÒÑÖª¿ÉµÃf¡ä£¨
¦Ð
3
£©=0£¬f£¨
¦Ð
3
£©=
¦Ð
3
-
3
£¬¿ÉµÃ·½³Ì×飬½â³öa£¬bºó×¢Òâ¼ìÑ飻
£¨2£©¶ÔÈÎÒâx1£¬x2¡Ê[-
¦Ð
3
£¬
¦Ð
3
]
£¬²»µÈʽf£¨x1£©-f£¨x2£©¡Ümºã³ÉÁ¢£¬µÈ¼ÛÓÚf£¨x£©max-f£¨x£©min¡Üm£¬ÀûÓõ¼Êý¼´¿ÉÇóµÃº¯Êýf£¨x£©ÔÚ[-
¦Ð
3
£¬
¦Ð
3
]
ÉϵÄ×î´óÖµ¡¢×îСֵ£»
£¨3£©¸ù¾ÝͼÏó¿É²Â²â¡°ÉϼÐÏß¡±·½³ÌΪ£ºy=mx+n£¬¸ù¾Ý¡°ÉϼÐÏß¡±µÄ¶¨Òå½øÐÐ˵Ã÷¼´¿É£»
½â´ð£º½â£º£¨1£©¡ßf£¨x£©=ax+bsinx£¬¡àf¡ä£¨x£©=a+bcosx£¬
¶øÓÉÒÑÖªµÃ£º
a+
1
2
b=0
¦Ð
3
a+
3
2
b=
¦Ð
3
-
3
£¬½âµÃa=1£¬b=-2£¬
´Ëʱf£¨x£©=x-2sinx£¬¡àf¡ä£¨x£©=1-2cosx£¬
µ±x¡Ê£¨0£¬
¦Ð
3
£©Ê±£¬f¡ä£¨x£©£¼0£¬µ±¡Ê£¨
¦Ð
3
£¬
¦Ð
2
£©Ê±£¬f¡ä£¨x£©£¾0£¬
¡àµ±x=
¦Ð
3
ʱ£¬f£¨x£©È¡µÃ¼«Ð¡Öµ
¦Ð
3
-
3
£¬¼´a=1£¬b=-2·ûºÏÌâÒ⣻
£¨2£©¶ÔÈÎÒâx1£¬x2¡Ê[-
¦Ð
3
£¬
¦Ð
3
]
£¬²»µÈʽf£¨x1£©-f£¨x2£©¡Ümºã³ÉÁ¢£¬µÈ¼ÛÓÚf£¨x£©max-f£¨x£©min¡Üm£¬
ÓÉ£¨1£©Öªf£¨x£©=x-2sinx£¬f¡ä£¨x£©=1-2cosx£¬
µ±x¡Ê[-
¦Ð
3
£¬
¦Ð
3
]
ʱ£¬f¡ä£¨x£©¡Ü0£¬ËùÒÔf£¨x£©ÔÚ[-
¦Ð
3
£¬
¦Ð
3
]
Éϵݼõ£¬
f(x)min=f(
¦Ð
3
)
=
¦Ð
3
-
3
£¬f(x)max=f(-
¦Ð
3
)
=-
¦Ð
3
+
3
£¬
f£¨x£©max-f£¨x£©min=2
3
-
2¦Ð
3
£¬
ËùÒÔm¡Ý2
3
-
2¦Ð
3
£»
£¨3£©¸ù¾ÝͼÏó²Â²â¡°ÉϼÐÏß¡±·½³ÌΪ£ºy=mx+n£¬ËµÃ÷ÈçÏ£º
ÓÉy¡ä£¨x£©=m-ncosx=m£¬µÃcosx=0£¬
µ±x=-
¦Ð
2
ʱ£¬cosx=0£¬´Ëʱy1=mx+n=-
m¦Ð
2
+n£¬y2=mx-nsinx=-
m¦Ð
2
+n£¬
¡ày1=y2£¬
¡à£¨-
¦Ð
2
£¬-
m¦Ð
2
+n£©ÊÇÖ±ÏßlÓëÇúÏßSµÄÇе㣻
µ±x=
3¦Ð
2
ʱ£¬cosx=0£¬´Ëʱy1=mx+n=
3m¦Ð
2
+n£¬y2=mx-nsinx=
3m¦Ð
2
+n£¬
¡ày1=y2£¬
¡à£¨
3¦Ð
2
£¬
3m¦Ð
2
+n£©Ò²ÊÇÖ±ÏßlÓëÇúÏßSµÄÇе㣻
¡àÖ±ÏßlÓëÇúÏßSÏàÇÐÇÒÖÁÉÙÓÐÁ½¸öÇе㣬
¶ÔÈÎÒâx¡ÊR£¬£¨mx+n£©-£¨mx-nsinx£©=n£¨1+sinx£©¡Ý0£¬mx+n¡Ýmx-nsinx£¬
Òò´ËÖ±Ïßl£ºy=mx+nΪÇúÏßS£ºy=mx-nsinx¡°ÉϼÐÏß¡±
µãÆÀ£º±¾Ì⿼²éÀûÓõ¼ÊýÑо¿ÇúÏßÉÏijµãÇÐÏß·½³Ì£¬£¨1£©ÎÊÖª£¬ÇóµÃa=1£¬b=-2ºó£¬Ðè·ÖÎöÑéÖ¤¡°x=
¦Ð
3
ʱ£¬f£¨x£©È¡µÃ¼«Ð¡Öµ¡±£¬Ñ§ÉúÒ×Íü¼ÇÕâÒ»²½£»·ÖÎö£¨-
¦Ð
2
£¬-
m¦Ð
2
+n£©Ó루
3¦Ð
2
£¬
3m
2
+n£©ÊÇÖ±ÏßlÓëÇúÏßSµÄÇе㣬¼´Âú×ã¢ÙÊÇÄѵ㣬¿¼²é×ۺϷÖÎöÓëÍÆÀíµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
a-x2
x
+lnx  (a¡ÊR £¬ x¡Ê[
1
2
 £¬ 2])

£¨1£©µ±a¡Ê[-2£¬
1
4
)
ʱ£¬Çóf£¨x£©µÄ×î´óÖµ£»
£¨2£©Éèg£¨x£©=[f£¨x£©-lnx]•x2£¬kÊÇg£¨x£©Í¼ÏóÉϲ»Í¬Á½µãµÄÁ¬ÏßµÄбÂÊ£¬·ñ´æÔÚʵÊýa£¬Ê¹µÃk¡Ü1ºã³ÉÁ¢£¿Èô´æÔÚ£¬ÇóaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•º£µíÇø¶þÄ££©ÒÑÖªº¯Êýf£¨x£©=a-2xµÄͼÏó¹ýÔ­µã£¬Ôò²»µÈʽf(x)£¾
34
µÄ½â¼¯Îª
£¨-¡Þ£¬-2£©
£¨-¡Þ£¬-2£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=a|x|µÄͼÏó¾­¹ýµã£¨1£¬3£©£¬½â²»µÈʽf(
2x
)£¾3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=a•2x+b•3x£¬ÆäÖг£Êýa£¬bÂú×ãa•b¡Ù0
£¨1£©Èôa•b£¾0£¬ÅжϺ¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èôa=-3b£¬Çóf£¨x+1£©£¾f£¨x£©Ê±µÄxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=a-2|x|+1£¨a¡Ù0£©£¬¶¨Ò庯ÊýF£¨x£©=
f(x)   £¬  x£¾0
-f(x) £¬    x£¼0
 ¸ø³öÏÂÁÐÃüÌ⣺¢ÙF£¨x£©=|f£¨x£©|£» ¢Úº¯ÊýF£¨x£©ÊÇÆ溯Êý£»¢Ûµ±a£¼0ʱ£¬Èômn£¼0£¬m+n£¾0£¬×ÜÓÐF£¨m£©+F£¨n£©£¼0³ÉÁ¢£¬ÆäÖÐËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸