分析 把已知等式变形,利用辅助角公式化积,然后利用三角函数的有界性转化为关于y的不等式求解.
解答 解:由y=f(x)=1+$\frac{sinx}{2+cosx}$,得sinx-(y-1)cosx=2(y-1),
∴$\sqrt{1+(y-1)^{2}}(\frac{1}{\sqrt{1+(y-1)^{2}}}sinx-\frac{y-1}{\sqrt{1+(y-1)^{2}}}cosx)=2(y-1)$,
即sin(x-θ)=$\frac{2(y-1)}{\sqrt{1+(y-1)^{2}}}$(tanθ=y-1),
由|$\frac{2(y-1)}{\sqrt{1+(y-1)^{2}}}$|≤1,得3y2-6y+2≤0,解得:$\frac{3-\sqrt{3}}{3}≤y≤\frac{3+\sqrt{3}}{3}$.
∴函数f(x)=1+$\frac{sinx}{2+cosx}$的最大值与最小值分别为$\frac{3+\sqrt{3}}{3},\frac{3-\sqrt{3}}{3}$,和为2.
故答案为:2.
点评 本题考查三角函数的最值的求法,训练了利用三角函数的有界性求函数的最值,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{10}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3413 | B. | 1193 | C. | 2718 | D. | 6587 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{8}{3}$ | C. | $\frac{6}{5}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com