【题目】2019年10月1日我国隆重纪念了建国70周年,期间进行了一系列大型庆祝活动,极大地激发了全国人民的爱国热情.某校高三学生也投入到了这场爱国活动中,他(她)们利用周日休息时间到社区做义务宣讲员,学校为了调查高三男生和女生周日的活动时间情况,随机抽取了高三男生和女生各40人,对他(她)们的周日活动时间进行了统计,分别得到了高三男生的活动时间(单位:小时)的频数分布表和女生的活动时间(单位:小时)的频率分布直方图.(活动时间均在内)
活动时间 | ||||||
频数 | 8 | 10 | 7 | 9 | 4 | 2 |
(1)根据调查,试判断该校高三年级学生周日活动时间较长的是男生还是女生?并说明理由;
(2)在被抽取的80名高三学生中,从周日活动时间在内的学生中抽取2人,求恰巧抽到1男1女的概率.
【答案】(1)女生,理由见解析;(2)
【解析】
(1)列出女生周日活动时间频数表,对比男生和女生活动时间频数表即可得出结论;
(2)运用古典概型的概率计算公式求解即可.
解:(1)该校高三年级周日活动时间较长的是女生,
理由如下:列出女生周日活动时间频数表
活动时间 | |||||
频数 | 6 | 7 | 12 | 10 | 4 |
对比男生和女生活动时间频数表,可以发现:
活动时间在2小时及其以上的男生有22人,女生有34人;
活动时间在3小时及其以上的男生有15,女生有26人;
都是女生人数多于男生人数,所以该校高三年级周日活动时间较长的是女生;
(2)被抽到的80学生中周日活动时间在内的男生有2人,分别记为,,女生有4,分别记为,,,,
从这6人中抽取2.共有以下15个基本事件,分别为:
,,,,,,,,,,,,,;
其中恰为1男1女的共有8种情形,
所以所求概率.
科目:高中数学 来源: 题型:
【题目】某市对高二学生的期末理科数学测试的数据统计显示,全市10000名学生的成绩服从正态分布,现从甲校100分以上(含100分)的200份试卷中用系统抽样中等距抽样的方法抽取了20份试卷来分析(试卷编号为001,002,…,200)统计如下:
试卷编号 | ||||||||||
试卷得分 | 109 | 118 | 112 | 114 | 126 | 128 | 127 | 124 | 126 | 120 |
试卷编号 | ||||||||||
试卷得分 | 135 | 138 | 135 | 137 | 135 | 139 | 142 | 144 | 148 | 150 |
注:表中试卷编
(1)写出表中试卷得分为144分的试卷编号(写出具体数据即可);
(2)该市又从乙校中也用与甲校同样的抽样方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图)在甲乙两校这40份学生的试卷中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市排名前15名的人数记为
附:若随机变量服从正态分布,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】半正多面体(semiregular solid)亦称“阿基米德多面体”,如图所示,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的边长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长为,则该二十四等边体外接球的表面积为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十三届全国人大二次会议于2019年3月5日在京召开为了了解某校大学生对两会的关注程度,学校媒体在开幕后的第二天,从全校学生中随机抽取了180人,对是否收看2019年两会开幕会情况进行了问卷调查,统计数据如下:
收看 | 没收看 | |
男生 | 80 | 40 |
女生 | 30 | 30 |
(1)根据上表说明,在犯错误的概率不超过1%的前提下,能否认为该校大学生收看开幕会与性别有关?(计算结果精确到0.001)
(2)现从随机抽取的学生中,采用按性别分层抽样的方法选取6人,来参加2019年两会的志愿者宣传活动,若从这6人中随机选取2人到各班级宣传介绍,求恰好选到一名男生和一名女生的概率. 附,其中.
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用细钢管焊接而成的花坛围栏构件如图所示,它的外框是一个等腰梯形PQRS,内部是一段抛物线和一根横梁,抛物线的顶点与梯形上底中点是焊接点O,梯形的腰紧靠在抛物线上,两条腰的中点是梯形的腰、抛物线以及横梁的焊接点A,B,抛物线与梯形下底的两个焊接点为C,D,已知梯形的高是40厘米,C,D两点间的距离为40厘米.
(1)求横梁AB的长度;
(2)求梯形外框的用料长度;
(注:细钢管的粗细等因素忽略不计,结果精确到1厘米)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.
(1)求这4000名考生的半均成绩(同一组中数据用该组区间中点作代表);
(2)由直方图可认为考生考试成绩z服从正态分布,其中分别取考生的平均成绩和考生成绩的方差,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?
(3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为,求.(精确到0.001)
附:①;
②,则;
③.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的首项,对任意的,都有,数列是公比不为的等比数列.
(1)求实数的值;
(2)设数列的前项和为,求所有正整数的值,使得恰好为数列中的项.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com