【题目】半正多面体(semiregular solid)亦称“阿基米德多面体”,如图所示,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的边长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长为
,则该二十四等边体外接球的表面积为( )
![]()
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,过原点
且斜率为1的直线交椭圆
于
两点,四边形
的周长与面积分别为12与
.
(1)求椭圆
的标准方程;
(2)直线
与圆
相切,且与椭圆
交于
两点,求原点到
的中垂线的最大距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列
前
项和为
,且满足![]()
(1)求数列
的通项公式;
(2)求数列
前
项和
;
(3)在数列
中,是否存在连续的三项
,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第十三届全国人大常委会第十一次会议审议的《固体废物污染环境防治法(修订草案)》中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中.为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取
户居民进行调查,得到如下的
列联表.
分类意识强 | 分类意识弱 | 合计 | |
试点后 |
| ||
试点前 |
| ||
合计 |
|
已知在抽取的
户居民中随机抽取
户,抽到分类意识强的概率为
.
(1)请将上面的
列联表补充完整;
(2)判断是否有
的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;
参考公式:
,其中
.
下面的临界值表仅供参考
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右顶点为
,
为上顶点,点
为椭圆
上一动点.
(1)若
,求直线
与
轴的交点坐标;
(2)设
为椭圆
的右焦点,过点
与
轴垂直的直线为
,
的中点为
,过点
作直线
的垂线,垂足为
,求证:直线
与直线
的交点在椭圆
上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为确定下一年度投入某种产品的生产所需的资金,需了解每投入2千万资金后,工人人数
(单位:百人)对年产能
(单位:千万元)的影响,对投入的人力和年产能的数据作了初步处理,得到散点图和统计量表.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
![]()
(1)根据散点图判断:
与
哪一个适宜作为年产能
关于投入的人力
的回归方程类型?并说明理由?
(2)根据(1)的判断结果及相关的计算数据,建立
关于
的回归方程;
(3)现该企业共有2000名生产工人,资金非常充足,为了使得年产能达到最大值,则下一年度共需投入多少资金(单位:千万元)?
附注:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,(说明:
的导函数为
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如表:
AQI指数值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 |
|
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
如图是某市12月1日-20日AQI指数变化趋势:
![]()
下列叙述正确的是( )
A.这20天中AQI指数值的中位数略高于100
B.这20天中的中度污染及以上的天数占![]()
C.该市12月的前半个月的空气质量越来越好
D.总体来说,该市12月上旬的空气质量比中旬的空气质量好
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等腰直角三角形
的斜边AB为正四面体
侧棱,直角边AE绕斜边AB旋转,则在旋转的过程中,有下列说法:
![]()
(1)四面体E
BCD的体积有最大值和最小值;
(2)存在某个位置,使得
;
(3)设二面角
的平面角为
,则
;
(4)AE的中点M与AB的中点N连线交平面BCD于点P,则点P的轨迹为椭圆.
其中,正确说法的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):
![]()
若分数不低于95分,则称该员工的成绩为“优秀”.
(1)从这20人中任取3人,求恰有1人成绩“优秀”的概率;
(2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.
组别 | 分组 | 频数 | 频率 |
|
1 |
| |||
2 |
| |||
3 |
| |||
4 |
|
![]()
①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);
②若从所有员工中任选3人,记
表示抽到的员工成绩为“优秀”的人数,求
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com