精英家教网 > 高中数学 > 题目详情
13.如图,已知四边形ABCD是矩形,AB=2BC=2,三角形PAB是正三角形,且平面ABCD⊥平面PCD.
(Ⅰ)若O是CD的中点,证明:BO⊥PA;
(Ⅱ)求平面PAB与平面PAD夹角的余弦值.

分析 (Ⅰ)法一、连接OA、OP,由题意可得BO⊥AO.再由平面PCD⊥平面ABCD,AD⊥PD,同理BC⊥PC.由线面垂直的判定可得PO⊥平面ABCD,进一步得到BO⊥PO.由线面垂直的判定得BO⊥平面PAO,从而得到BO⊥PA.
证法二、由题意题干求解直角三角形得PC=PD,取AB的中点Q,连接OP、OQ,则OP、OC、OQ两两互相垂直,以O为原点,分别以OC、OP、OQ为x轴、y轴、z轴,建立空间直角坐标系.得到所用点的坐标,进一步得到$\overrightarrow{BO}、\overrightarrow{PA}$的坐标,由数量积为0可得BO⊥PA;
(Ⅱ)分别求出平面PAB与平面PAD的法向量,由法向量夹角的余弦值求得平面PAB与平面PAD夹角的余弦值.

解答 (Ⅰ)证明:法一、连接OA、OP,
∵四边形ABCD是矩形,且AB=2BC,O是CD的中点,

∴BO⊥AO.①
又∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,AD?平面ABCD,AD⊥CD,
∴AD⊥平面PCD.
而PD?平面PCD,∴AD⊥PD,同理BC⊥PC.
在Rt△ADP和Rt△BCP中,AD=BC,PA=PB,
∴PC=PD,
∴PO⊥CD,又PO?平面PCD,
∴PO⊥平面ABCD,而BO?平面ABCD,
∴BO⊥PO. ②
由①②及AO∩PO=O,AO、PO?平面PAO,得
BO⊥平面PAO,又PA?平面PAO,
∴BO⊥PA.
证法二、∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,
AD?平面ABCD,AD⊥CD,∴AD⊥平面PCD.
而PD?平面PCD,∴AD⊥PD,同理BC⊥PC.
在Rt△ADP和Rt△BCP中,AD=BC,PA=PB,
∴PC=PD,
取AB的中点Q,连接OP、OQ,则OP、OC、OQ两两互相垂直,
以O为原点,分别以OC、OP、OQ为x轴、y轴、z轴,建立空间直角坐标系.
∵AB=2BC=2,
∴A(-1,0,1),B(1,0,1),
又△PAB是正三角形,△PCD是等腰三角形,

OP=$\sqrt{P{D^2}-O{D^2}}=\sqrt{2}$,∴P(0,$\sqrt{2}$,0),
从而,$\overrightarrow{BO}=(-1,0,-1)$,$\overrightarrow{PA}=(-1,-\sqrt{2},1)$,
∴$\overrightarrow{BO}•\overrightarrow{PA}=-1×(-1)+0×(-\sqrt{2})+(-1)×1=0$,
∴$\overrightarrow{BO}⊥\overrightarrow{PA}$,即BO⊥PA;
(Ⅱ)解:由(Ⅰ)知:$\overrightarrow{PA}=(-1,-\sqrt{2},1)$,$\overrightarrow{AB}=(2,0,0)$,
设平面BPA的法向量为$\overrightarrow{{n}_{1}}=({x}_{1},{y}_{1},{z}_{1})$
由$\left\{{\begin{array}{l}{\overrightarrow{PA}•\overrightarrow{n_1}=0}\\{\overrightarrow{PB}•\overrightarrow{n_1}=0}\end{array}}\right.⇒\left\{{\begin{array}{l}{-{x_1}-\sqrt{2}{y_1}+{z_1}=0}\\{2{x_1}=0}\end{array}}\right.$,取y1=1,得$\left\{{\begin{array}{l}{{x_1}=0}\\{{y_1}=1}\\{{z_1}=\sqrt{2}}\end{array}}\right.$,
∴平面BPA的一个法向量为$\overrightarrow{n_1}=(0,1,\sqrt{2})$.
又$\overrightarrow{PA}=(-1,-\sqrt{2},1)$,$\overrightarrow{DA}=(0,0,1)$,
设平面DPA的一个法向量为$\overrightarrow{n_2}=({x_2},{y_2},{z_2})$,
由$\left\{\begin{array}{l}{\overrightarrow{PA}•\overrightarrow{{n}_{2}}=0}\\{\overrightarrow{DA}•\overrightarrow{{n}_{2}}=0}\end{array}\right.$⇒$\left\{\begin{array}{l}{-{x}_{2}-\sqrt{2}{y}_{2}+{z}_{2}=0}\\{{z}_{2}=0}\end{array}\right.$,取y2=1,得$\left\{\begin{array}{l}{{x}_{2}=-\sqrt{2}}\\{{y}_{2}=1}\\{{z}_{2}=0}\end{array}\right.$,
∴平面DPA的一个法向量为$\overrightarrow{{n}_{2}}=(-\sqrt{2},1,0)$,
cos<$\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}$>=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}$=$\frac{0×(-\sqrt{2})+1×1+\sqrt{2}×0}{\sqrt{{0}^{2}+{1}^{2}+(\sqrt{2})^{2}}×\sqrt{(-\sqrt{2})^{2}+{1}^{2}+{0}^{2}}}=\frac{1}{3}$.
故二平面PAB与平面PAD夹角的余弦值为$\frac{1}{3}$.

点评 本题考查直线与平面垂直的性质,考查了二面角的平面角的求法,训练了利用空间向量求二面角的平面角的大小,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$,x∈R
(Ⅰ)求函数f(x)的最小正周期和在区间(0,$\frac{π}{2}$)上的值域;
(Ⅱ)设在△ABC中,内角所对边的边长分别为,且c=2$\sqrt{3}$,f(C)=0,若sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在集合D上都有意义的两个函数f(x)与g(x),如果对任意x∈D,都有|f(x)-g(x)|≤1,则称f(x)与g(x)在集合D上是缘分函数,集合D称为缘分区域.若f(x)=x2+3x+2与g(x)=2x+3在区间[a,b]上是缘分函数,则缘分区域D是(  )
A.[-2,-1]∪[1,2]B.[-2,-1]∪[0,1]C.[-2,0]∪[1,2]D.[-1,0]∪[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x),其中h′(x)是函数h(x)的导函数.
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当-8<a<-2时,若存在x1,x2∈[1,3],使得|f(x1)-f(x2)|>(m+ln3)a-2ln3+$\frac{2}{3}$ln(-a) 恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算i+i3=0(i为虚数单位).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某人驾车遇到险情而紧急制动并以速度v(t)=120-60t(t为事件单位s)形式至停止,则从开始制动到汽车完全停止所形式的距离(单位:m)为(  )
A.100B.150C.120D.160

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若正数x,y满足x+2y=xy,则x+2y的最小值是(  )
A.$\frac{24}{5}$B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合$A=\{x|\frac{2}{x}>1\},B=\{y|y=\sqrt{{2^x}-1},x∈A\}$,则A∩(∁RB)等于(  )
A.$(\sqrt{3},2)$B.$[\sqrt{3},2)$C.$(0,\sqrt{3})$D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知E,F,G,H依次为空间四边形ABCD各边的中点.
(1)求证:E,F,G,H四点共面;
(2)若AC与BD相互垂直,BD=2,AC=4,求EG2+HF2
(3)若$EG=\sqrt{7},BD=2,AC=4$,求直线BD与AC的夹角.

查看答案和解析>>

同步练习册答案