分析 (1)如图所示,E,F,G,H依次为空间四边形ABCD各边的中点,利用三角形中位线定理可得:EF∥GH,即可证明E,F,G,H四点共面.
(2)由AC=4,EF=2;同理可得:EH=1.可得四边形EFGH为矩形.利用勾股定理即可得出:EG2+HF2.
(3)由(1)可知:∠EFG或其补角为直线BD与AC的夹角.利用余弦定理即可得出.
解答 (1)证明:如图所示,
∵E,F,G,H依次为空间四边形ABCD各边的中点,
∴EF$\underset{∥}{=}$$\frac{1}{2}$AC,GH$\underset{∥}{=}$$\frac{1}{2}$AC,
∴EF$\underset{∥}{=}$GH,
∴四边形EFGH为平行四边形.
∴E,F,G,H四点共面.
(2)解:∵AC=4,∴EF=2;同理可得:EH=1.
又AC⊥BD,∴EF⊥EH,
可得四边形EFGH为矩形.
∴EG2+HF2=2×(22+12)=10.
(3)解:由(1)可知:∠EFG或其补角为直线BD与AC的夹角.
cos∠EFG=$\frac{{2}^{2}+{1}^{2}-(\sqrt{7})^{2}}{2×2×1}$=-$\frac{1}{2}$,
∴直线BD与AC的夹角为60°.
点评 本题考查了空间位置关系、空间角、平行四边形与矩形的性质、三角形中位线定理、余弦定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 空气质量指数 | (0,35] | (35,75] | (75,115] | (115,150] | (150,250] | >250 |
| 空气质量类别 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
| 甲区天数 | 13 | 20 | 42 | 20 | 3 | 2 |
| 乙区天数 | 8 | 32 | 40 | 16 | 2 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 第x年 | 1 | 2 | 3 | 4 | 5 |
| 需求量(万吨) | 3 | 6 | 5 | 7 | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| $\bar x$ | $\bar y$ | $\bar w$ | $\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$ | $\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$ | $\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$ | $\sum_{i=1}^8{({w_i}-\overline w)({y_i}-\overline y)}$ |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com