精英家教网 > 高中数学 > 题目详情
12.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
$\bar x$$\bar y$$\bar w$$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$$\sum_{i=1}^8{({w_i}-\overline w)({y_i}-\overline y)}$
46.65636.8289.81.61469108.8
表中${w_i}=\sqrt{x_i}$,$\bar w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(Ⅰ)根据散点图判断,y=a+bx与$y=c+d\sqrt{x}$,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由);
(Ⅱ)根据( I)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y-x,根据( II)的结果回答下列问题:
(i)当年宣传费x=49时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\hat β=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\bar v)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$,$\hat α=\overline v-\hat β\overline u$.

分析 (Ⅰ)根据散点图,即可判断出,
(Ⅱ)先建立中间量w=

x
,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;
(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,
(ii)求出预报值得方程,根据函数的性质,即可求出.

解答 解:(Ⅰ)由散点图可以判断,y=c+d$\sqrt{x}$适宜作为年销售量y关于年宣传费x的回归方程类型;
(Ⅱ)令w=$\sqrt{x}$,先建立y关于w的线性回归方程,由于$\stackrel{∧}{d}$=$\frac{108.6}{1.6}$=68,
$\stackrel{∧}{c}$=$\stackrel{∧}{y}$-$\stackrel{∧}{d}$w=563-68×6.8=100.6,
所以y关于w的线性回归方程为$\stackrel{∧}{y}$=100.6+68w,
因此y关于x的回归方程为$\stackrel{∧}{y}$=100.6+68$\sqrt{x}$,
(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值$\stackrel{∧}{y}$=100.6+68$\sqrt{49}$=576.6,
年利润z的预报值$\stackrel{∧}{z}$=576.6×0.2-49=66.32,
(ii)根据(Ⅱ)的结果可知,年利润z的预报值$\stackrel{∧}{z}$=0.2(100.6+68$\sqrt{x}$)-x=-x+13.6$\sqrt{x}$+20.12,
当$\sqrt{x}$=6.8时,年利润的预报值最大.

点评 本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设集合$A=\{x|\frac{2}{x}>1\},B=\{y|y=\sqrt{{2^x}-1},x∈A\}$,则A∩(∁RB)等于(  )
A.$(\sqrt{3},2)$B.$[\sqrt{3},2)$C.$(0,\sqrt{3})$D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知E,F,G,H依次为空间四边形ABCD各边的中点.
(1)求证:E,F,G,H四点共面;
(2)若AC与BD相互垂直,BD=2,AC=4,求EG2+HF2
(3)若$EG=\sqrt{7},BD=2,AC=4$,求直线BD与AC的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C:(x-3)2+(y+1)2=25,过点M(0,4)作直线l与圆C交于点A,B,
(1)若AB=8,求直线l的方程.
(2)当直线l的斜率为-2时,在直线l上求一点P,使过点P的切线长等于PM.
(3)AB的中点为E,在平面上找一定点F,使EF的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数$z=\frac{i}{-2-i}$(i为虚数单位)在复平面内对应的点所在象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,a,b,c分别为角A,B,C所对的边,已知bcosB是acosC与ccosA的等差中项.
(1)确定角B的大小;
(2)若$b=\sqrt{3}$,且△ABC的面积为$\frac{{3\sqrt{3}}}{4}$,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的单调递增区间;
(2)若不等式f(x)-m>0对于任意的$x∈[{0,\frac{π}{2}}]$都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=$\frac{1}{{{e^x}-x+m}}$的定义域为R,则实数m的取值范围是m>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若幂函数f(x)的图象经过点A($\frac{1}{4}$,$\frac{1}{2}$),则曲线y=f(x)在A点处的切线方程是4x-4y+1=0.

查看答案和解析>>

同步练习册答案