| $\bar x$ | $\bar y$ | $\bar w$ | $\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$ | $\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$ | $\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$ | $\sum_{i=1}^8{({w_i}-\overline w)({y_i}-\overline y)}$ |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
分析 (Ⅰ)根据散点图,即可判断出,
(Ⅱ)先建立中间量w=
| x |
解答 解:(Ⅰ)由散点图可以判断,y=c+d$\sqrt{x}$适宜作为年销售量y关于年宣传费x的回归方程类型;
(Ⅱ)令w=$\sqrt{x}$,先建立y关于w的线性回归方程,由于$\stackrel{∧}{d}$=$\frac{108.6}{1.6}$=68,
$\stackrel{∧}{c}$=$\stackrel{∧}{y}$-$\stackrel{∧}{d}$w=563-68×6.8=100.6,
所以y关于w的线性回归方程为$\stackrel{∧}{y}$=100.6+68w,
因此y关于x的回归方程为$\stackrel{∧}{y}$=100.6+68$\sqrt{x}$,
(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值$\stackrel{∧}{y}$=100.6+68$\sqrt{49}$=576.6,
年利润z的预报值$\stackrel{∧}{z}$=576.6×0.2-49=66.32,
(ii)根据(Ⅱ)的结果可知,年利润z的预报值$\stackrel{∧}{z}$=0.2(100.6+68$\sqrt{x}$)-x=-x+13.6$\sqrt{x}$+20.12,
当$\sqrt{x}$=6.8时,年利润的预报值最大.
点评 本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题
科目:高中数学 来源: 题型:选择题
| A. | $(\sqrt{3},2)$ | B. | $[\sqrt{3},2)$ | C. | $(0,\sqrt{3})$ | D. | (0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com