分析 (1)由题意可得2bcosB=acosC+ccosA,结合正弦定理和三角函数公式可得cosB=$\frac{1}{2}$,由三角形内角的范围可得B值.
(2)由已知利用三角形面积公式可求ac,利用余弦定理及平方和公式即可计算a+c的值.
解答 解:(1)在△ABC中,∵bcosB是acosC,ccosA的等差中项,
∴2bcosB=acosC+ccosA,
由正弦定理可得2sinBcosB=sinAcosC+sinCcosA,
即2sinBcosB=sin(A+C)=sinB,
又∵sinB>0,上式两边同除以sinB可得cosB=$\frac{1}{2}$,
∵0<B<π,
∴B=$\frac{π}{3}$.
(2)∵$b=\sqrt{3}$,B=$\frac{π}{3}$,由余弦定理可得:3=a2+c2-ac=(a+c)2-3ac,①
又∵△ABC的面积为$\frac{{3\sqrt{3}}}{4}$=$\frac{1}{2}$acsinB=$\frac{1}{2}×$a×$c×\frac{\sqrt{3}}{2}$,解得:ac=3,②
∴由①②联立可得:a+c=2$\sqrt{3}$.
点评 本题主要考查了正弦定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| $\bar x$ | $\bar y$ | $\bar w$ | $\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$ | $\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$ | $\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$ | $\sum_{i=1}^8{({w_i}-\overline w)({y_i}-\overline y)}$ |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| η | 0 | 1 | 2 | 3 | 4 | 5 |
| P | 0.1 | 0.2 | 0.2 | 0.3 | 0.1 | 0.1 |
| A. | x≤4 | B. | 3<x<4 | C. | 3≤x≤4 | D. | 3<x≤4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com