精英家教网 > 高中数学 > 题目详情
8.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高二学生中抽取的人数为9.

分析 本题是一个分层抽样问题,根据所给的高一学生的总数和高一学生抽到的人数,可以做出每个个体被抽到的概率,根据这个概率值做出高二学生被抽到的人数.

解答 解:∵由题意知高一学生210人,从高一学生中抽取的人数为7
∴可以做出每$\frac{210}{7}$=30人抽取一个人,
∴从高二学生中抽取的人数应为$\frac{270}{30}$=9.
故答案为:9.

点评 抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某人驾车遇到险情而紧急制动并以速度v(t)=120-60t(t为事件单位s)形式至停止,则从开始制动到汽车完全停止所形式的距离(单位:m)为(  )
A.100B.150C.120D.160

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简:
(1)$\frac{{{{sin}^2}(α+π)cos(π+α)cos(-α-2π)}}{{tan(π+α){{sin}^3}(\frac{π}{2}+α)sin(-α-2π)}}$;
(2)$\frac{{\sqrt{1+2sin{{20}°}cos{{160}°}}}}{{sin{{160}°}-\sqrt{1-{{sin}^2}{{20}°}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)是定义在R的偶函数,且当x≥0时$f(x)={log_{\frac{1}{2}}}(x+1)$.
(1)求f(0)、f(-1)的值;  
(2)求f(x)的表达式;
(3)若f(a-1)<f(3-a),试求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知E,F,G,H依次为空间四边形ABCD各边的中点.
(1)求证:E,F,G,H四点共面;
(2)若AC与BD相互垂直,BD=2,AC=4,求EG2+HF2
(3)若$EG=\sqrt{7},BD=2,AC=4$,求直线BD与AC的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在斜三棱柱ABC-A1B1C1中,BC⊥CC1,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D.
(1)证明:BC⊥平面ACC1A1
(2)若AA1=$\sqrt{2}$,求V${\;}_{C-{A}_{1}{B}_{1}B}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C:(x-3)2+(y+1)2=25,过点M(0,4)作直线l与圆C交于点A,B,
(1)若AB=8,求直线l的方程.
(2)当直线l的斜率为-2时,在直线l上求一点P,使过点P的切线长等于PM.
(3)AB的中点为E,在平面上找一定点F,使EF的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,a,b,c分别为角A,B,C所对的边,已知bcosB是acosC与ccosA的等差中项.
(1)确定角B的大小;
(2)若$b=\sqrt{3}$,且△ABC的面积为$\frac{{3\sqrt{3}}}{4}$,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+sinx\\-{x^2}+cos(x+α)\end{array}\right.$$\begin{array}{l}x≥0\\ x<0\end{array}$(α∈[0,2π))是奇函数,则α=(  )
A.0B.$\frac{π}{2}$C.πD.$\frac{3π}{2}$

查看答案和解析>>

同步练习册答案