精英家教网 > 高中数学 > 题目详情
7.复数$z=\frac{i}{-2-i}$(i为虚数单位)在复平面内对应的点所在象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:∵$z=\frac{i}{-2-i}$=$\frac{i(-2+i)}{(-2-i)(-2+i)}=-\frac{1}{5}-\frac{2}{5}i$,
∴复数$z=\frac{i}{-2-i}$在复平面内对应的点的坐标为(-$\frac{1}{5}$,-$\frac{2}{5}$),所在象限为第三象限.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,梯形ABCD中,AB∥CD,BE⊥CD,DE=BE=CE=2AB,将ABED沿BE边翻折,使平面ABED⊥平面BCE,M是BC的中点,点N在线段DE上且满足DN=$\frac{1}{4}$DE.
(1)求证:MN∥平面ACD
(2)若AB=2,求点A到平面BMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某一扇型的铁皮,半径长为1,圆心角为$\frac{π}{3}$,今想从中剪下一个矩形ABCD,如图所示,设∠COP=α,试问当α取何值时,矩形ABCD的面积最大,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某地最近十年粮食需求量逐年上升,如表是部分统计数据
第x年12345
需求量(万吨)36578
(1)利用所给数据求两变量之间的回归方程
(2)利用(1)中所求出的回归直线方程预测该地第6年的粮食需求量
附:回归直线方程的斜率和截距的最小二乘估计分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)=x3,则函数y=f(a-bx)(其中a,b∈R)的导函数是(  )
A.y′=3(a-bx)B.y′=2-3b(a-bx)2C.y′=-3b(a-bx)2D.y′=3b(a-bx)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
$\bar x$$\bar y$$\bar w$$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$$\sum_{i=1}^8{({w_i}-\overline w)({y_i}-\overline y)}$
46.65636.8289.81.61469108.8
表中${w_i}=\sqrt{x_i}$,$\bar w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(Ⅰ)根据散点图判断,y=a+bx与$y=c+d\sqrt{x}$,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由);
(Ⅱ)根据( I)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y-x,根据( II)的结果回答下列问题:
(i)当年宣传费x=49时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\hat β=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\bar v)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$,$\hat α=\overline v-\hat β\overline u$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\frac{1}{ln(x+1)}$+$\sqrt{4-{x}^{2}}$的定义域为(  )
A.(-1,0)∪(0,2]B.[-2,0)∪(0,2]C.[-2,2]D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.排列数$A_{100}^2$=9900.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a,b∈R,a>b,则下列结论正确的是(  )
A.a2>b2B.${a^{\frac{1}{2}}}$>${b^{\frac{1}{2}}}$C.a-3<b-3D.${a^{\frac{1}{3}}}$>${b^{\frac{1}{3}}}$

查看答案和解析>>

同步练习册答案