精英家教网 > 高中数学 > 题目详情
18.某一扇型的铁皮,半径长为1,圆心角为$\frac{π}{3}$,今想从中剪下一个矩形ABCD,如图所示,设∠COP=α,试问当α取何值时,矩形ABCD的面积最大,并求出这个最大值.

分析 先用α把矩形的各边长表示出来,进而表示矩形的面积,化简,利用α的范围,集合三角函数的性质求解.

解答 解:∵△OBC是直角三角形,
∴在Rt△OBC中,由OB=OC•cosα=cosα;BC=OC•sinα=sinα;
又∵△OAD是直角三角形,
在Rt△OAD中,
∵$\frac{AD}{OA}=tan60°=\sqrt{3}$,
∴OA=$\frac{\sqrt{3}}{3}BC$=$\frac{\sqrt{3}}{3}$sinα;
又∵AB=OB-OA=cosα-$\frac{\sqrt{3}}{3}$sinα.
所以:矩形ABCD的面积等于AB•BC:
令f(α)=AB•BC=(cosα-$\frac{\sqrt{3}}{3}$sinα)•sinα
化简得:f(α)=$\frac{\sqrt{3}}{3}sin(2α+\frac{π}{6})-\frac{\sqrt{3}}{6}$
∵$0<α<\frac{π}{3}$
∴$\frac{π}{6}<2α+\frac{π}{6}<\frac{5π}{6}$,
当$2α+\frac{π}{6}=\frac{π}{2}$,即$α=\frac{π}{6}$时,函数f(α)取得最大值,即矩形ABCD的面积最大,最大值为$\frac{\sqrt{3}}{6}$.

点评 本题考查了三角函数在实际生活中的运用,解题的关键就是关键图形建立三角模型,利用三角函数的性质解题.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.计算i+i3=0(i为虚数单位).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列命题:①存在实数α,使sinαcosα=1;②函数$y=sin(\frac{3π}{2}+x)$是偶函数;③直线$x=\frac{π}{8}$是函数$y=sin(\frac{5π}{4}+2x)$的一条对称轴;④若α,β是第一象限的角,且α>β,则sinα>sinβ.⑤对于向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$,若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$;其中正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足an+1-an=1,a1=1,试比较$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2^n}}}}$与$\frac{n+2}{2}$的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.过双曲线$\frac{x^2}{4}-\frac{y^2}{5}=1$的右焦点做倾斜角为45°的弦AB.求:
(1)求弦AB的中点C到右焦点F2的距离;
(2)求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知E,F,G,H依次为空间四边形ABCD各边的中点.
(1)求证:E,F,G,H四点共面;
(2)若AC与BD相互垂直,BD=2,AC=4,求EG2+HF2
(3)若$EG=\sqrt{7},BD=2,AC=4$,求直线BD与AC的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex-ax-1(a∈R).
(1)求函数f(x)的单调区间;
(2)求在f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数$z=\frac{i}{-2-i}$(i为虚数单位)在复平面内对应的点所在象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过点(0,-2)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是(  )
A.[60°,120°]B.[30°,150°]
C.(0°,60°]∪[120°,180°)D.[60°,90°)∪(90°,120°]

查看答案和解析>>

同步练习册答案