分析 (1)取AC中点G,连接,MG,DG,证明四边形DGMN是平行四边形,可得DG∥MN,利用线面平行的判定定理,证明MN∥平面ACD
(2)若AB=2,由 VA-BMN=VM-ABN得点A到平面BMN的距离.
解答 (1)证明:取AC中点G,连接,MG,DG
∵AG=GC,BM=MC∴GM∥AB,且 $GM=\frac{1}{2}AB$
∵AB∥DE,且 AB=$\frac{1}{2}$DE,$DN=\frac{1}{4}DE$∴DN∥AB,且$DN=\frac{1}{2}AB$
∴四边形DGMN是平行四边形,∴DG∥MN,…3分
又∵DG?平面ACD,MN?平面ACD,
∴MN∥平面ACD.…(5分)
(2)解:设点A到平面BMN的距离为h.
∵平面ABED⊥平面BCE,且CE⊥BE,∴CE⊥平面ABED,
又 M是BC的中点,
∴点M到平面ABED的距离等于点C到平面ABED的距离的一半,即为$\frac{1}{2}BC=2$,…(7分)
在△BMN中 由平面ABED⊥平面BCE,且DE⊥BE得DE⊥平面BCE,
∴$NB=\sqrt{N{E^2}+B{E^2}}=\sqrt{{3^2}+{4^2}}=5$$NC=\sqrt{N{E^2}+C{E^2}}=\sqrt{{3^2}+{4^2}}=5$,
∴NB=NC,故NM⊥BM.
又 $MN=\sqrt{N{E^2}+M{E^2}}=\sqrt{{3^2}+{{(2\sqrt{2})}^2}}=\sqrt{17}$,$BM=2\sqrt{2}$,
∴${S_{△BMN}}=\frac{1}{2}•BM•MN=\frac{1}{2}×2\sqrt{2}×\sqrt{17}=\sqrt{34}$.
而 ${S_{△ABN}}=\frac{1}{2}•AB•BE=\frac{1}{2}×4×2=4$…(9分)
由 VA-BMN=VM-ABN得 $\frac{1}{3}•{S_{△BMN}}•h=\frac{1}{3}•{S_{△ABN}}•\frac{1}{2}•CE$,
即 $\frac{1}{3}×\sqrt{34}×h=\frac{1}{3}×4×2$解得 $h=\frac{{4\sqrt{34}}}{17}$,
∴点A到平面BMN的距离为$\frac{{4\sqrt{34}}}{17}$….12 分
点评 本题考查直线与平面平行的证明,考查点到平面距离的求法,解题时要注意空间思维能力的培养,要注意等积法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 20≤x≤30 | B. | 20≤x≤45 | C. | 15≤x≤30 | D. | 15≤x≤45 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\sqrt{3},2)$ | B. | $[\sqrt{3},2)$ | C. | $(0,\sqrt{3})$ | D. | (0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com