精英家教网 > 高中数学 > 题目详情
4.在斜三棱柱ABC-A′B′C′中,AC=BC=A′A=A′C=$\sqrt{2}$,A′在底面ABC上的射影为AB的中点D,E为线段BC的中点.
(1)证明:平面A′DE⊥平面BCC′B′;
(2)求三棱锥D-B′BE的体积.

分析 (1)连结CD,通过△A′AD≌△A′CD得出AD=CD=BD,再利用等边对等角和三角形的内角和定理得出AC⊥BC,结合BC⊥A′D得出BC⊥平面A′DE,故而平面A′DE⊥平面BCC′B′;
(2)求出A′D和S△BDE,则VD-B′BE=VB′-BDE=VA′-BDE=$\frac{1}{3}{S}_{△BDE}•A′D$.

解答 (1)证明:连结CD,则A′D⊥AD,A′D⊥CD,
又AA′=A′C,∴△A′AD≌△A′CD,
∴AD=CD,
又AD=BD,∴CD=BD,
∴∠DAC=∠DCA,∠DBC=∠DCB,
∵∠DAC+∠DCA+∠DBC+∠DCB=180°,
∴∠ACD+∠BCD=90°,即AC⊥BC,
∵DE是△ABC的中位线,
∴DE∥AC,
∴DE⊥BC,
又A′D⊥平面ABC,BC?平面ABC,
∴A′D⊥BC,
又A′D∩DE=D,A′D?平面A′DE,DE?平面A′DE,
∴BC⊥平面A′DE,又BC?平面B′C′CB.
∴平面A′DE⊥平面BCC′B′.
(2)解:由(I)知AC⊥BC,
∴AB=2,AD=$\frac{1}{2}$AB=1,
∴A′D=$\sqrt{AA{′}^{2}-A{D}^{2}}$=1,
又DE=$\frac{1}{2}$AC=$\frac{\sqrt{2}}{2}$,BE=$\frac{1}{2}BC$=$\frac{\sqrt{2}}{2}$,DE⊥BC,
∴VD-B′BE=VB′-BDE=VA′-BDE=$\frac{1}{3}{S}_{△BDE}•A′D$=$\frac{1}{3}×\frac{1}{2}×\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}×1$=$\frac{1}{12}$.

点评 本题考查了面面垂直的判定,棱锥的体积计算,利用平面几何证明AC⊥BC是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.数列{an}的前n项和为Sn,且S3=1,S4=-3,an+3=2an(n∈N*),则S2017=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过点(1,-3)且垂直于于直线x-2y+3=0的直线方程为(  )
A.x-2y-7=0B.2x+y+1=0C.x-2y+7=0D.2x+y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,且直线${l_1}:\frac{x}{a}+\frac{y}{b}=1$被椭圆C1截得的弦长为$\sqrt{7}$.
(I)求椭圆C1的方程;
(II)以椭圆C1的长轴为直径作圆C2,过直线l2:y=4上的动点M作圆C2的两条切线,设切点为A,B,若直线AB与椭圆C1交于不同的两点C,D,求|CD|•|AB|的取信范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,底面ABCD边长为4的正方形,PA=PD=2$\sqrt{2}$,平面PAD⊥平面ABCD.
(Ⅰ)求证:平面PAD⊥平面PCD;
(Ⅱ)点E为线段PD上一点,且三棱锥E-BCD的体积为$\frac{8}{3}$,求平面EBC与平面PAB所成锐二面角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,AB=BC=$\sqrt{2}$,BB1=3,D为A1C1的中点,F在线段AA1上.
(1)AF为何值时,CF与平面B1DF所成的角为直角?
(2)设AF=1,求平面B1CF与平面ABC所成的 锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z1=1+5i,z2=-3+7i,则复数z=z1-z2在复平面内对应的点在(  )
A.第四象限B.第二象限C.第三象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设α为锐角,sinα=$\frac{3}{5}$,则cosα=(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{16}{25}$D.$-\frac{16}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=${∫}_{0}^{1}$xdx,b=1-${∫}_{0}^{1}$$\sqrt{x}$dx,c=${∫}_{0}^{1}$x3dx,则a,b,c的大小关系(  )
A.b>c>aB.b>a>cC.a>c>bD.a>b>c

查看答案和解析>>

同步练习册答案