精英家教网 > 高中数学 > 题目详情

Sn+…+,写出S1S2S3S4的值,归纳并猜想出结果,并给出证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(1)求证:当时,
(2)证明: 不可能是同一个等差数列中的三项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1),即当(k∈N*)时,an=(-1)k-1k,记Sn=a1+a2+…+an(n∈N*),用数学归纳法证明Si(2i+1)=-i(2i+1)(i∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用数学归纳法证明不等式:>1(n∈N*且n>1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足a1λan+1ann-4,λ∈R,n∈N,对任意λ
∈R,证明:数列{an}不是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
(1)sin213°+cos217°-sin 13°cos 17°.
(2)sin215°+cos215°-sin 15°cos 15°.
(3)sin218°+cos212°-sin 18°cos 12°.
(4)sin2(-18°)+cos248°-sin(-18°)cos 48°.
(5)sin2(-25°)+cos255°-sin(-25°)cos 55°.
①试从上述五个式子中选择一个,求出这个常数.
②根据①的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知多项式f(n)=n5n4n3n.
(1)求f(-1)及f(2)的值;
(2)试探求对一切整数nf(n)是否一定是整数?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

=(   )

A. B. C. D. 

查看答案和解析>>

同步练习册答案