精英家教网 > 高中数学 > 题目详情
12.已知正数a、b满足$\frac{3}{5a}$+$\frac{1}{5b}$=1,实数x、y满足$\left\{\begin{array}{l}{x-y≤2}\\{x+2y≥5}\\{y-2≤0}\end{array}\right.$,z=ax+by,则当3a+4b取最小值时z的最大值为5.

分析 利用基本不等式先求出a,b,然后由约束条件作出可行域,利用目标函数的几何意义,结合数形结合即可得到结论.

解答 解:正数a,b满足$\frac{3}{5a}$+$\frac{1}{5b}$=1,
则3a+4b=(3a+4b)($\frac{3}{5a}$+$\frac{1}{5b}$)=$\frac{1}{5}$($\frac{3a}{b}+\frac{12b}{a}$+13)≥$\frac{1}{5}×(2\sqrt{\frac{3a}{b}×\frac{12b}{a}}+13)$=3,
当且仅当a=1,b=$\frac{1}{2}$,取等号.
即目标函数z=ax+by=x+$\frac{1}{2}$y,
由约束条件$\left\{\begin{array}{l}x-y≤2\\ x+2y≥5\\ y-2≤0\end{array}\right.$作出可行域如图,
联立$\left\{\begin{array}{l}x-y=2\\ y-2=0\end{array}\right.$,解得A(4,2),
由z=x+$\frac{1}{2}$y,得y=-2x+2z,
由图可知,当直线y=-2x+2z过点A(4,2)时,
直线在y轴上的截距最大,z有最大值为:4+2×$\frac{1}{2}$=5.
故答案为:5.

点评 本题考查了基本不等式的应用,简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知f(x)是定义在R上的偶函数,并满足f(x+2)=-$\frac{1}{f(x)}$,当1≤x≤2时,f(x)=x-2.则f(6.5)等于(  )
A.4.5B.-4.5C.-0.5D.0.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)用“五点法”作函数$y=2sin(\frac{x}{2}+\frac{π}{3}),x∈R$的简图;
(2)该函数的图象可由函数y=sinx,x∈R的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,|$\overrightarrow{a}$-$\overrightarrow{b}$|=5,向量$\overrightarrow{c}$-$\overrightarrow{a}$,$\overrightarrow{c}$-$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,|$\overrightarrow{c}$-$\overrightarrow{a}$|=2$\sqrt{3}$,则向量$\overrightarrow{a}$•$\overrightarrow{c}$的最大值为24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知在△ABC中,∠BAC=120°,AB=2,AC=1,AD为∠BAC的平分线,则$\overrightarrow{AD}•\overrightarrow{AC}$=(  )
A.$\frac{7}{3}$B.$\frac{1}{3}$C.-$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{(a-2)x,x≥2}\\{(\frac{1}{2})^{x}-1,x<2}\end{array}\right.$满足对任意的实数x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则实数a的取值范围为(  )
A.(-∞,2)B.(-∞,$\frac{13}{8}$]C.(-∞,2]D.[$\frac{13}{8}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.己知直线L经过点P(0,-1),且与直线x-2y+1=0平行,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-ax(a∈R)
(1)若不等式f(x)>a-3的解集为R,求实数a的取值范围;
(2)设x>y>0,且xy=2,若不等式f(x)+f(y)+2ay≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax+x2-xlna,a>1
(1)求证:f(x)在(0,+∞)上单调递增.
(2)若函数y=|f(x)-m|-3有四个零点,求m的取值范围.
(3)若对于任意的x∈[-1,1]都有f(x)≤e2-1恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案