精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{\begin{array}{l}{(a-2)x,x≥2}\\{(\frac{1}{2})^{x}-1,x<2}\end{array}\right.$满足对任意的实数x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则实数a的取值范围为(  )
A.(-∞,2)B.(-∞,$\frac{13}{8}$]C.(-∞,2]D.[$\frac{13}{8}$,2)

分析 由已知可得函数f(x)在R上为减函数,则分段函数的每一段均为减函数,且在分界点左段函数不小于右段函数的值,进而得到实数a的取值范围.

解答 解:若对任意的实数x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,
则函数f(x)在R上为减函数,
∵函数f(x)=$\left\{\begin{array}{l}{(a-2)x,x≥2}\\{(\frac{1}{2})^{x}-1,x<2}\end{array}\right.$,
故$\left\{\begin{array}{l}a-2<0\\ 2(a-2)≤(\frac{1}{2})^{2}-1\end{array}\right.$,
解得:a∈(-∞,$\frac{13}{8}$],
故选:B.

点评 本题考查的知识点是分段函数的应用,函数的单调性,是函数图象和性质的综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知c>0,且c≠1,设p:函数y=cx在R上递减;q:函数f(x)=x2-2cx-1在($\frac{1}{2}$,+∞)上为增函数,若“p且q”为假,“p或q”为真,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-ax2-lnx(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线斜率为-2,求a的值以及切线方程;
(2)当a=-1时,求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$x2-(a+1)x+alnx.
(1)讨论函数f(x)的单调性;
(2)若m,n是函数f(x)的两个极值点,m<n,n∈(1,e].求证:对任意的x1,x2∈[m,n],不等式|f(x1)-f(x2)|<1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正数a、b满足$\frac{3}{5a}$+$\frac{1}{5b}$=1,实数x、y满足$\left\{\begin{array}{l}{x-y≤2}\\{x+2y≥5}\\{y-2≤0}\end{array}\right.$,z=ax+by,则当3a+4b取最小值时z的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\left\{\begin{array}{l}{7x-5y-23≤0}\\{x+7y-11≤0}\\{4x+y+10≥0}\end{array}\right.$,则x2+y2的最大值为37,最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数y=sinx+(a+2)cosx是奇函数,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某城市受雾霾影响严重,现欲在该城市中心P的两侧建造A,B两个空气净化站(A,P,B三点共线),A,B两站对该城市的净化度分别为a,1-a,其中a∈(0,1).已知对该城市总净化效果为A,B两站对该城市的净化效果之和,且每站净化效果与净化度成正比,与中心P到净化站距离成反比.若AB=1,且当AP=$\frac{3}{4}$时,A站对该城市的净化效果为$\frac{a}{3}$,B站对该城市的净化效果为1-a.
(1)设AP=x,x∈(0,1),求A,B两站对该城市的总净化效果f(x);
(2)无论A,B两站建在何处,若要求A,B两站对该城市的总净化效果至少达到$\frac{1}{2}$,求a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.证明:${A}_{n+1}^{m}$=${A}_{n}^{m}$+m${A}_{n}^{m-1}$.

查看答案和解析>>

同步练习册答案