精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=x-ax2-lnx(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线斜率为-2,求a的值以及切线方程;
(2)当a=-1时,求f(x)的极值.

分析 (1)先求函数f(x)的导数,再根据导数的几何意义列式求出a值,最后再根据直线的方程写出切线的方程即可.
(2)对函数求导,讨论函数的单调性,即可得到f(x)的极小值.

解答 解:(1)f(x)=x-ax2-lnx的导数为
f′(x)=1-2ax-$\frac{1}{x}$.
由题设,f′(1)=-2a=-2,
解得a=1,
此时f(1)=0,切线方程为y=-2(x-1),
即2x+y-2=0;
(2)当a=-1时,f(x)=x+x2-lnx,
f′(x)=1+2x-$\frac{1}{x}$=$\frac{2{x}^{2}+x-1}{x}$
=$\frac{(2x-1)(x+1)}{x}$,(x>0),
令f′(x)>0,可得x>$\frac{1}{2}$,令f′(x)<0,可得0<x<$\frac{1}{2}$,
可得x=$\frac{1}{2}$处f(x)取得极小值,且为$\frac{3}{4}$+ln2.

点评 本题主要考查了利用函数的导数判断函数的单调性,导数的几何意义在切线的求解中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=$\frac{1}{3}$CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,求BF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义函数y=f(x),x∈I,若存在常数M,对于任意x1∈I,存在唯一的x2∈I,使得$\frac{f{(x}_{1})+f{(x}_{2})}{2}$=M,则称函数f(x)在I上的“均值”为M,已知f(x)=x2+log2x,x∈[1,4],则函数f(x)=x2+log2x,x∈[1,4]上的“均值”为$\frac{19}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$y=\frac{{\sqrt{3}}}{3}$,则y′等于(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.0D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)用“五点法”作函数$y=2sin(\frac{x}{2}+\frac{π}{3}),x∈R$的简图;
(2)该函数的图象可由函数y=sinx,x∈R的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}的前n项和为Sn,若a1=1,an+1=2Sn,(n∈N* ),则a6=(  )
A.35B.2•34+1C.2•34D.34+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,|$\overrightarrow{a}$-$\overrightarrow{b}$|=5,向量$\overrightarrow{c}$-$\overrightarrow{a}$,$\overrightarrow{c}$-$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,|$\overrightarrow{c}$-$\overrightarrow{a}$|=2$\sqrt{3}$,则向量$\overrightarrow{a}$•$\overrightarrow{c}$的最大值为24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{(a-2)x,x≥2}\\{(\frac{1}{2})^{x}-1,x<2}\end{array}\right.$满足对任意的实数x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则实数a的取值范围为(  )
A.(-∞,2)B.(-∞,$\frac{13}{8}$]C.(-∞,2]D.[$\frac{13}{8}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,三个内角A,B,C所对的边长分别是a,b,c,且$\overrightarrow{AB}•\overrightarrow{AC}$=6,$\overrightarrow{AB}•\overrightarrow{BC}$=2.求c.

查看答案和解析>>

同步练习册答案