精英家教网 > 高中数学 > 题目详情
13.数列{an}的前n项和为Sn,若a1=1,an+1=2Sn,(n∈N* ),则a6=(  )
A.35B.2•34+1C.2•34D.34+1

分析 通过an+1=2Sn与an+2=2Sn+1作差可知$\frac{{a}_{n+2}}{{a}_{n+1}}$=3,进而数列{an+1}是以a2为首项、3为公比的等比数列,计算即得结论.

解答 解:∵an+1=2Sn
∴an+2=2Sn+1
两式相减得:an+2-an+1=2an+1
即$\frac{{a}_{n+2}}{{a}_{n+1}}$=3,
又∵a1=1,an+1=2Sn
∴a2=2S1=2a1=2,
∴数列{an+1}是以2为首项、3为公比的等比数列,
∴a6=2•35-1=2•34
故选:C.

点评 本题考查数列的递推式,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知二次函数f(x)的两个零点分别为$\frac{b}{1-a}$,$\frac{b}{1+a}$(0<b<a+1),f(0)=b2.定义card(A):集合A中的元素个数,若“$\left\{\begin{array}{l}x∈A\\ card(A∩Z)=4\end{array}\right.$”是“f(x)>0”的充要条件,则实数a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=$\frac{\sqrt{3}}{2}$sin2x+cos2x的最小正周期为π,最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=f(x)在x=x0处的导数f′(x0)的几何意义是(  )
A.在点x0处的斜率
B.曲线y=f(x)在点(x0,f(x0))处切线的斜率
C.在点(x0,f(x0))处的切线与x轴所夹锐角的正切值
D.点(x0,f(x0))与点(0,0)连线的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-ax2-lnx(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线斜率为-2,求a的值以及切线方程;
(2)当a=-1时,求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知角α的终边过点P(-4,3),则2sinα+cosα的值是(  )
A.1或-1B.$\frac{2}{5}$或$-\frac{2}{5}$C.1或$-\frac{2}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$x2-(a+1)x+alnx.
(1)讨论函数f(x)的单调性;
(2)若m,n是函数f(x)的两个极值点,m<n,n∈(1,e].求证:对任意的x1,x2∈[m,n],不等式|f(x1)-f(x2)|<1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\left\{\begin{array}{l}{7x-5y-23≤0}\\{x+7y-11≤0}\\{4x+y+10≥0}\end{array}\right.$,则x2+y2的最大值为37,最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二项式(1+$\sqrt{2}$x)n=a0+a1x+a2x2+…+anxn(x∈R,n∈N)
(1)若展开式中第五项的二项式系数是第三项系数的3倍,求n的值;
(2)若n为正偶数时,求证:a0+a2+a4+a6+…+an为奇数.
(3)证明:C${\;}_{n}^{1}$+2C${\;}_{n}^{2}$•2+3C${\;}_{n}^{3}$•22+…+nC${\;}_{n}^{n}$•2n-1=n•3n-1(n∈N+

查看答案和解析>>

同步练习册答案