精英家教网 > 高中数学 > 题目详情
△ABC中,已知
AB
AC
=3
BA
BC

(1)求
tanB
tanA

(2)若cosC=
5
5
,求A.
(1)∵
AB
AC
=3
BA
BC

∴cbcosA=3cacosB,
即bcosA=3acosB,
由正弦定理
b
sinB
=
a
sinA
=2R,
得:sinBcosA=3sinAcosB,
又0<A+B<π,∴cosA>0,cosB>0,
在等式两边同时除以cosAcosB,
得tanB=3tanA;
tanB
tanA
=3.
(2)∵cosC=
5
5
,0<C<π,
sinC=
1-cos2C
=
2
5
5

∴tanC=2,A+B+C=π,
∴tan(A+B)=tan(π-C)=-tanC=-2,
tanA+tanB
1-tanA•tanB
=-2,将tanB=3tanA代入得:
3tan2A-2tanA-1=0,
即(tanA-1)(3tanA+1)=0,
∴tanA=1或tanA=-
1
3

∵cosA>0,∴tanA=1,
∵A为三角形的内角,
∴A=
π
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如果物体沿与变力F(x)=3x(F单位:N,X单位:M)相同的方向移动,那么从位置0到2变力所做的功W=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示:|
OA
|=2,
OB
=2
3
,且
OA
OB
=0,∠AOC=
π
6
,设
OC
=λ
OA
OB
,则
λ
μ
=(  )
A.
3
3
B.
1
3
C.3D.
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知四边形OABC是等腰梯形,A(6,0),C(1,
3
)
,点,M满足
OM
=
1
2
OA
,点P在线段BC上运动(包括端点),如图.
(1)求∠OCM的余弦值;
(2)是否存在实数λ,使(
OA
OP
)⊥
CM
,若存在,求出满足条件的实数λ的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线C1:x2=8y和圆C2:x2+(y-2)2=4,直线l过C1焦点,且与C1,C2交于四点,从左到右依次为A,B,C,D,则
AB
CD
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在长方体ABCD-A1B1C1D1中,设AD=AA1=1,AB=2,则|
CC1
-
BD1|
|
=______,
CC1
CA1|
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知F1、F2是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则
PF1
PF2
=______;椭圆C的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设F1、F2分别是椭圆
x2
4
+y2
=1的左、右焦点.
(Ⅰ)若P是第一象限内该椭圆上的一点,且
PF1
PF2
=-
5
4
,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为作标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知
a
=
0,2
b
=
1,1
,则下列结论中正确的是(  )
A.(
a
-
b
)⊥
b
B.(
a
-
b
)⊥(
a
+
b
)
C.
a
b
D.|
a
|=|
b
|

查看答案和解析>>

同步练习册答案