精英家教网 > 高中数学 > 题目详情
设f(x)=sin(2x+φ),若f(x)≤f()对一切x∈R恒成立,则:
①f(-)=0;
②f(x)的图象关于点(,0)对称;
③f(x)既不是奇函数也不是偶函数;
④f(x)的单调递增区间是[kπ+,kπ+](k∈Z)
以上结论正确的是    (写出所有正确结论的编号).
【答案】分析:根据题意可算出函数表达式为:f(x)=sin(2x++2kπ).通过表达式计算函数值,可得①②都是真命题;根据函数图象的对称性,结合函数奇偶性的图象特征,可得③是假命题;根据正弦函数单调区间的公式,计算得f(x)的单调递增区间不是[kπ+,kπ+](k∈Z),得④是假命题.
解答:解:∵f(x)≤f()对一切x∈R恒成立,
∴f(x)=sin(2x+φ)在x=时取得最大值,即2×+φ=+2kπ,k∈Z,得φ=+2kπ,k∈Z,
因此函数表达式为:f(x)=sin(2x++2kπ)
因为f(-)=sin[2×(-)++2kπ]=sin2kπ=0,所以①是真命题;
∵f()=sin(2×x++2kπ)=sin(π+2kπ)=0,
∴x=是函数y=f(x)的零点,得点(,0)是函数f(x)图象的对称中心,故②是真命题;
∵函数y=f(x)的图象既不关于y轴对称,也不关于原点对称
∴f(x)既不是奇函数也不是偶函数,得③是真命题;
令-+2kπ≤2x++2kπ,得-+kπ≤x≤+kπ,
∴f(x)的单调递增区间是[-+kπ,+kπ](k∈Z),故④是假命题.
由以上的讨论,可得正确命题为①②③,共三个
故答案为:①②③
点评:本题以命题真假的判断为载体,考查了三角函数的单调性、图象的对称性、函数的最值和零点等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)求函数y=
log2
1
sinx
-1
的定义域.

(2)设f(x)=sin(cosx),(0≤x≤π),求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的是(  )
A、设f(x)=sin(2x+
π
3
),则?x∈(-
π
3
π
6
)
,必有f(x)<f(x+0.1)
B、?x0∈R.便得
1
2
sinx0+
3
2
cosx0>1
C、设f(x)=cos(x+
π
3
),则函数y=f(x+
π
6
)是奇函数
D、设f(x)=2sin2x,则f(x+
π
3
)=2sin(2x+
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=sin(x-sinx),x∈R.关于f(x)有以下结论:
①f(x)是奇函数;  
②f(x)的值域是[0,1];  
③f(x)是周期函数;
④x=π是函数y=f(x)图象的一条对称轴;  
⑤f(x)在[0,π]上是增函数.
其中正确结论的序号是
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•武汉模拟)设f(x)=sinπx是[0,1]上的函数,且定义f1(x)=f(x),…,fn(x)=f(fn-1(x)),n∈N*,则满足fn(x)=x,x∈[0,1]的x的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北二模)设f(x)=sin(2x+φ),若f(x)≤f(
π
6
)对一切x∈R恒成立,则:
①f(-
π
12
)=0;
②f(x)的图象关于点(
12
,0)对称;
③f(x)既不是奇函数也不是偶函数;
④f(x)的单调递增区间是[kπ+
π
6
,kπ+
3
](k∈Z)
以上结论正确的是
①②③
①②③
(写出所有正确结论的编号).

查看答案和解析>>

同步练习册答案