精英家教网 > 高中数学 > 题目详情
8.如图一段程序执行后输出结果是(  )
A.2B.8C.18D.10

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用顺序结构计算变量A的值,并输出,逐行分析程序各语句的功能不难得到结果.

解答 解:∵A=2,
∴A=A×3=2×3=6,
∴A=2×A+6=12+6=18.
故输出的变量A的值是18.
故选:C.

点评 本题给出伪代码,求输出的A的值,着重考查了赋值语句的理解、伪代码的含义等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知-9,a1,a2,-1成等差数列,1,b1,b2,27成等比数列,则$\frac{b_2}{b_1}•({a_2}-{a_1})$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等差数列{an}中,若a3+a4+a5+a6+a7=45,那么a5等于(  )
A.4B.5C.9D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:
喜欢游泳不喜欢游泳合计
男生10
女生20
合计
已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为$\frac{3}{5}$.
(1)请将上述列联表补充完整;
(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.
下面的临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=ln$\frac{3x}{2}$-$\frac{2}{x}$的零点一定位于区间(  )
A.(0,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知i是虚数单位,复数z满足(z-2)i=-3-i.
(1)求z;
(2)若复数$\frac{x+i}{z}$在复平面内对应的点在第一象限,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一个几何体的三视图如图所示,则这个几何体的体积为$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在2×2列联表中,两个比值相差越大,两个分类变量有关系的可能性就越大,那么这两个比值为(  )
A.$\frac{a}{a+b}$与$\frac{c}{c+d}$B.$\frac{a}{c+d}$与$\frac{c}{a+b}$C.$\frac{a}{a+d}$与$\frac{c}{b+c}$D.$\frac{a}{b+d}$与$\frac{c}{a+c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为36,焦距为12,则椭圆的方程为(  )
A.$\frac{x^2}{36}+\frac{y^2}{64}=1$B.$\frac{x^2}{100}+\frac{y^2}{64}=1$
C.$\frac{x^2}{36}+\frac{y^2}{64}=1或\frac{x^2}{64}+\frac{y^2}{36}=1$D.$\frac{x^2}{100}+\frac{y^2}{64}=1$或$\frac{x^2}{64}+\frac{y^2}{100}=1$

查看答案和解析>>

同步练习册答案