精英家教网 > 高中数学 > 题目详情
某厂生产产品x件的总成本c(x)=
1
12
x3
(万元),已知产品单价P(万元)与产品件数x满足:P2=
k
x
,生产1件这样的产品单价为16万元.
(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;
(2)产量x定为多少件时总利润L(x)(万元)最大?
(1)由题意有162=
k
1
,解得k=256,
P=
256
x
=
16
x

∴总利润L(x)=x•
16
x
-
x3
12
=-
x3
12
+16
x
(x>0)

(2)由(1)得L′(x)=-
1
4
x2+
8
x
,令L′(x)=0⇒
8
x
=
1
4
x2

解得x=4,则x=4,所以当产量定为4时,总利润最大.
答:产量x定为4件时总利润L(x)最大.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx+a(x2-x)
(1)若a=-1,求证f(x)有且仅有一个零点;
(2)若对于x∈[1,2],函数f(x)图象上任意一点处的切线的倾斜角都不大于
π
4
,求实数a的取值范围;
(3)若f(x)存在单调递减区间,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
eax
x2+1
,a∈R

(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=f(x)是R上的可导函数,当x≠0时,有f′(x)+
f(x)
x
>0
,则函数F(x)=xf(x)+
1
x
的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线f(x)=x-
1
2
在点(a,f(a))处的切线与两条坐标轴围成的三角形的面积为18,则a=(  )
A.64B.32C.16D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=-
1
3
x3
+x在(a,10-a2)上有最大值,则实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三次函数f(x)的导函数f′(x)=3x2-3ax,f(0)=b,(a、b实数).若f(x)在区间[-1,1]上的最小值、最大值分别为-2,1,且1<a<2,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1+lnx
x

(1)若函数f(x)在区间(
a
2
,a+
1
2
)
上存在极值,其中a>0,求实数a的取值范围.
(2)设g(x)=xf(x)+bx-1+ln(2-x
)
(b>0)
,若g(x)在(0,1]上的最大值为
1
2
,求实数b的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的两侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足D与A相距50km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为3a元和5a元,问供水站C建在何处才能使水管费用最省?

查看答案和解析>>

同步练习册答案