精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1+lnx
x

(1)若函数f(x)在区间(
a
2
,a+
1
2
)
上存在极值,其中a>0,求实数a的取值范围.
(2)设g(x)=xf(x)+bx-1+ln(2-x
)
(b>0)
,若g(x)在(0,1]上的最大值为
1
2
,求实数b的值.
(1)∵函数f(x)的定义域为{x|x>0},f′(x)=-
lnx
x2

f′(x)=-
lnx
x2
=0
,解得x=1,
当0<x<1时,f'(x)>0,f(x)单调递增;当x>1时,f'(x)<0,f(x)单调递减,
∴f(x)在x=1处取极大值,
因为f(x)在区间(
a
2
,a+
1
2
)
上存在极值,所以
a
2
<1<a+
1
2
,解得
1
2
<a<2

所以实数a的取值范围是(
1
2
,2).
(2)g(x)=xf(x)+bx-1-ln(2-x)=bx+lnx-ln(2-x),
∵b>0,当x∈(0,1]时,g′(x)=b+
2
x(2-x)
>0,
所以g(x)在(0,1]上单调递增,
故g(x)在(0,1]上的最大值为g(1)=b,
因此b=
1
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+ax2+bx+a2(a、b∈R).
(1)当a=0,b=-3时,求函数f(x)在[-1,3]上的最大值;
(2)若函数f(x)在x=1处有极值10,求f(x)的解析式;
(3)当a=-2时,若函数f(x)在[2,+∞)上是单调增函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=x3+2x2-2x-1在点x=1处的切线方程是(  )
A.y=5x-1B.y=5x-5C.y=3x-3D.y=x-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某厂生产产品x件的总成本c(x)=
1
12
x3
(万元),已知产品单价P(万元)与产品件数x满足:P2=
k
x
,生产1件这样的产品单价为16万元.
(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;
(2)产量x定为多少件时总利润L(x)(万元)最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=xlnx,g(x)=
x
ex
-
2
e

(Ⅰ)求函数f(x)的最小值;
(Ⅱ)证明:对任意m,n∈(0,+∞),都有f(m)≥g(n)成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3+
1-a
2
x2-ax-a,x∈R,其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t).记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一块半径为r的残缺的半圆形材料ABC,O为半圆的圆心,OC=
1
2
r
,残缺部分位于过点C的竖直线的右侧.现要在这块材料上截出一个直角三角形,有两种设计方案:如图甲,以BC为斜边;如图乙,直角顶点E在线段OC上,且另一个顶点D在
AB
上.要使截出的直角三角形的面积最大,应该选择哪一种方案?请说明理由,并求出截得直角三角形面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-x3+x2+b,g(x)=alnx.
(1)若f(x)在x∈[-
1
2
,1)
上的最大值为
3
8
,求实数b的值;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)在(1)的条件下,设F(x)=
f(x),x<1
g(x),x≥1
,对任意给定的正实数a,曲线y=F(x)上是否存在两点P、Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x2+
2
x
,g(x)=(
1
2
)x+m
,若?x1∈[1,2],?x2∈[-1,1],使得f(x1)≥g(x2),则实数m的取值范围是______.

查看答案和解析>>

同步练习册答案