精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+a2(a、b∈R).
(1)当a=0,b=-3时,求函数f(x)在[-1,3]上的最大值;
(2)若函数f(x)在x=1处有极值10,求f(x)的解析式;
(3)当a=-2时,若函数f(x)在[2,+∞)上是单调增函数,求b的取值范围.
(1)当a=0,b=-3时,f(x)=x3-3x,
所以f′(x)=3x2-3,
令f′(x)=0,解得x1=-1,x2=1
列表:
x-1(-1,1)1(1,3)3
f′(x)0-0+
f(x)极大值2减函数极小值-2增函数18
从上表可知,函数f(x)在[-1,3]上的最大值为18.
(2)因为f(x)=x3+ax2+bx+a2,所以f'(x)=3x2+2ax+b,
由已知条件,得
f(1)=0
f(1)=10.
2a+b+3=0
a2+a+b+1=10.

解得
a=4
b=-11
a=-3
b=3.

下面分别检验:
①当a=4,b=-11时,f(x)=x3+4x2-11x+16,f′(x)=3x2+8x-11,
令f′(x)=0,即3x2+8x-11=0,解得x1=-
11
3
,x2=1,
列表:
x(-∞,-
11
3
)
-
11
3
(-
11
3
,1)
1(1,+∞)
f′(x)+0-0+
f(x)增函数极大值减函数极小值10增函数
由上表可知,f(x)在x=1处取极小值10,符合题意.
②当a=-3,b=3时,f(x)=x3-3x2+3x+9,f′(x)=3x2-6x+3=3(x2-2x+1)=3(x-1)2≥0,f(x)为增函数,不合题意,舍去.
所以当a=4,b=-11时,f(x)=x3+4x2-11x+16为所求函数的解析式.
综上所述,所求函数的解析式为f(x)=x3+4x2-11x+16.
(3)当a=-2时,f(x)=x3-2x2+bx+4,f'(x)=3x2-4x+b,
此导函数是二次函数,二次项系数大于0,且对称轴为x=
2
3

因为函数f(x)在[2,+∞)上单调递增,所以f(x)≥0在[2,+∞)上恒成立,
也就是f'(2)≥0,
即3×22-4×2+b≥0,解得b≥-4,
所以,b的取值范围是[-4,+∞).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+ax-lnx,a∈R
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(3)求证:当x∈(0,e]时,e2x-
5
2
>lnx+
lnx
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=-
1
3
x3
+x在(a,10-a2)上有最大值,则实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为改善行人过马路难的问题,市政府决定在如图所示的矩形区域ABCD(AB=60米,AD=104米)内修建一座过街天桥,天桥的高GM与HN均为4
3
米,∠GEM=∠HFN=
π
6
,AE,EG,HF,FC的造价均为每米1万元,GH的造价为每米2万元,设MN与AB所成的角为α(α∈[0,
π
4
]),天桥的总造价(由AE,EG,GH,HF,FC五段构成,GM与HN忽略不计)为W万元.
(1)试用α表示GH的长;
(2)求W关于α的函数关系式;
(3)求W的最小值及相应的角α.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1+lnx
x

(1)若函数f(x)在区间(
a
2
,a+
1
2
)
上存在极值,其中a>0,求实数a的取值范围.
(2)设g(x)=xf(x)+bx-1+ln(2-x
)
(b>0)
,若g(x)在(0,1]上的最大值为
1
2
,求实数b的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ax3+bx+c图象过点(0,-
1
3
)
,且在x=1处的切线方程是y=-3x-1.
(1)求y=f(x)的解析式;
(2)求y=f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

f(x)=2x4-3x2+1在[
1
2
,2]上的最大值、最小值分别是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
x2
2
-2ax+3lnx.(0<a<3)
(1)当a=2时,求函数f(x)=
x2
2
-2ax+3lnx的单调区间.
(2)当x∈[1,+∞)时,若f(x)≥-5xlnx+3lnx-
3
2
恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若实数a,b,c,d满足(b+a2-3lna)2+(c-d+2)2=0,则(a-c)2+(b-d)2的最小值为(  )
A.
2
B.2C.2
2
D.8

查看答案和解析>>

同步练习册答案