精英家教网 > 高中数学 > 题目详情
已知一块半径为r的残缺的半圆形材料ABC,O为半圆的圆心,OC=
1
2
r
,残缺部分位于过点C的竖直线的右侧.现要在这块材料上截出一个直角三角形,有两种设计方案:如图甲,以BC为斜边;如图乙,直角顶点E在线段OC上,且另一个顶点D在
AB
上.要使截出的直角三角形的面积最大,应该选择哪一种方案?请说明理由,并求出截得直角三角形面积的最大值.
如图甲,

设∠DBC=α(0<α<
π
2
),
BD=
3r
2
cosα
DC=
3r
2
sinα

所以S△BDC=
1
2
BD•DC=
1
2
3r
2
cosα•
3r
2
sinα

=
9
16
r2sin2α≤
9
16
r2

当且仅当α=
π
4
时取等号,
此时点D到BC的距离为
3
4
r
,可以保证点D在半圆形材料ABC内部,
因此按照图甲方案得到直角三角形的最大面积为
9
16
r2

如图乙,

设∠EOD=θ,则OE=rcosθ,DE=rsinθ,
所以S△BDE=
1
2
r2(1+cosθ)sinθ
θ∈[
π
3
π
2
]

f(θ)=
1
2
r2(1+cosθ)sinθ
,则f′(θ)=
1
2
r2(1+cosθ)(2cosθ-1)

θ∈[
π
3
π
2
]
时,f'(θ)≤0,所以θ=
π
3
时,即点E与点C重合时,△BDE的面积最大值为
3
3
8
r2

因为
3
3
8
r2
9
16
r2

所以选择图乙的方案,截得的直角三角形面积最大,最大值为
3
3
8
r2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
eax
x2+1
,a∈R

(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三次函数f(x)的导函数f′(x)=3x2-3ax,f(0)=b,(a、b实数).若f(x)在区间[-1,1]上的最小值、最大值分别为-2,1,且1<a<2,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1+lnx
x

(1)若函数f(x)在区间(
a
2
,a+
1
2
)
上存在极值,其中a>0,求实数a的取值范围.
(2)设g(x)=xf(x)+bx-1+ln(2-x
)
(b>0)
,若g(x)在(0,1]上的最大值为
1
2
,求实数b的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3-
1
2
x2+cx+d在x=2处取得极值.
(1)求c的值;
(2)当x<0时,f(x)<
1
6
d2+2d恒成立,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

f(x)=2x4-3x2+1在[
1
2
,2]上的最大值、最小值分别是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=2x2-
1
3
x3
在区间[0,6]上的最大值是(  )
A.
32
3
B.
16
3
C.12D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的两侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足D与A相距50km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为3a元和5a元,问供水站C建在何处才能使水管费用最省?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=xsinx在x=x0处取得极值,则(1+x02)cos2x0的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案