精英家教网 > 高中数学 > 题目详情
已知函数f(x)满足f(x)=f(3x),当x∈[1,3),f(x)=lnx,若在区间[1,9)内,函数g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是(  )
A.(
ln3
3
1
e
)
B.(
ln3
9
1
3e
)
C.(
ln3
9
1
2e
)
D.(
ln3
9
ln3
3
)
设x∈[3,9),则
x
3
∈[1,3)
∵x∈[1,3),f(x)=lnx,
∴f(
x
3
)=ln
x
3

∵函数f(x)满足f(x)=f(3x),
∴f(
x
3
)=f(x)=ln
x
3

∴f(x)=
lnx,1≤x<3
ln
x
3
,3≤x<9

∵在区间[1,9)内,函数g(x)=f(x)-ax有三个不同零点,
∴f(x)-ax=0在区间[1,9)上有三个解,即a=
f(x)
x
有三个解,
则y=a与h(x)=
f(x)
x
的图象有三个交点,
当x∈[1,3),h(x)=
f(x)
x
=
lnx
x
,则h′(x)=
1-lnx
x2
=0,解得x=e,
∴当x∈[1,e)时,h′(x)>0,当x∈(e,3)时,h′(x)<0即函数h(x)=
f(x)
x
=
lnx
x
在[1,e)上单调递增,在(e,3)上单调递减,
∴当x=e处,函数h(x)=
f(x)
x
=
lnx
x
在[1,3)上取最大值
1
e

当x∈[3,9),h(x)=
f(x)
x
=
ln
x
3
x
,则h′(x)=
1-ln
x
3
x2
=0,解得x=3e,
∴当x∈[3,3e)时,h′(x)>0,当x∈(3e,9)时,h′(x)<0即函数h(x)=
f(x)
x
=
ln
x
3
x
在[3,3e)上单调递增,在(3e,9)上单调递减,
∴当x=3e处,函数h(x)=
f(x)
x
=
ln
x
3
x
在[3,9)上取最大值
1
3e

根据函数的单调性,以及h(1)=0,h(e)=
1
e
,h(3)=0,h(3e)=
1
3e
,h(9)=
ln3
9
,画出函数的大值图象,
根据图象可知y=a与h(x)在[1,3)上一个交点,在[3,3e) 上两个交点,
∴在区间[1,9)内,函数g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是(
ln3
9
1
3e
).
故选:B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知曲线C:f(x)=ax3-x2+x过点P(3,3).
(1)求a的值;
(2)求曲线C在点P(3,3)处的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知曲线y=x4+ax2+1在点(-1,a+2)处切线的斜率为8,a=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)满足f(2x-1)=
1
2
f(x)+x2-x+2
,则函数f(x)在(1,f(1))处的切线是(  )
A.2x+3y+12=0B.2x-3y+10=0C.2x-y+2=0D.2x-y-2=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
2
ax2
+2lnx,曲线y=f(x)在x=1处的切线斜率为4.
(1)求a的值及切线方程;
(2)点P(x,y)为曲线y=f′(x)上一点,求y-x的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,x=±1是函数f(x)=ax3+bx2+cx+d的两个极值点,f′(x)为函数f(x)的导函数,则不等式x•f′(x)>0的解集为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程x3-3x-m=0有且只有两个不同的实根,则实数m=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln(ax+1)+
1-x
1+x
,x≥0
,其中a>0.
(Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若f(x)的最小值为1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ex-ax(e为自然对数的底数).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)如果对任意x∈[2,+∞),不等式f(x)>x+x2恒成立,求实数a的取值范围;
(Ⅲ)设n∈N*,求证:(
1
n
n+(
2
n
n+(
3
n
n+…+(
n
n
n
e
e-1

查看答案和解析>>

同步练习册答案