精英家教网 > 高中数学 > 题目详情
已知曲线y=x4+ax2+1在点(-1,a+2)处切线的斜率为8,a=______.
∵y=x4+ax2+1,
∴y′=4x3+2ax,
∵曲线y=x4+ax2+1在点(-1,a+2)处切线的斜率为8,
∴-4-2a=8
∴a=-6
故答案为:-6.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=xekx(k≠0).
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)当k>0时,求函数f(x)的单调区间;
(3)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2x-2lnx
(Ⅰ)求函数在(1,f(1))的切线方程;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x0,y0),且x1<x0<x2,使得曲线在点Q处的切线lP1P2,则称l为弦P1P2的陪伴切线.已知两点A(1,f(1)),B(e,f(e)),试求弦AB的陪伴切线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1处有极值0,则a+b=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx2-2x+c在x=-2时有极大值6,在x=1时有极小值,
(1)求a,b,c的值;
(2)求f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=1nx-
1
2
ax2
-2x
(1)若函数f(x)在x=2处取得极值,求实数a的值;
(2)若函数f(x)在定义域内单调递增,求a的取值范围;
(3)若a=-
1
2
时,关于x的方程f(x)=-
1
2
x+b在[1,4]上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线y=ax3+bx-1在点(1,f(1))处的切线方程为y=x,则a+b=(  )
A.-3B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)满足f(x)=f(3x),当x∈[1,3),f(x)=lnx,若在区间[1,9)内,函数g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是(  )
A.(
ln3
3
1
e
)
B.(
ln3
9
1
3e
)
C.(
ln3
9
1
2e
)
D.(
ln3
9
ln3
3
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=ex(sinx-cosx),x∈(0,2013π),则函数f(x)的极大值之和为(  )
A.
e(1-e2012π)
e-1
B.
eπ(1-e2012π)
1-e
C.
eπ(1-e1006π)
1-e
D.
eπ(1-e1006π)
1-eπ

查看答案和解析>>

同步练习册答案