精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=4sin$\frac{x}{2}$sin($\frac{x}{2}$+$\frac{π}{6}$)+2$\sqrt{3}$(cosx-1).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间[0,$\frac{2π}{3}$]上的最小值.

分析 (Ⅰ)利用三角函数的恒等变换化简f(x)为正弦型函数,即可求出它的最小正周期;
(Ⅱ)根据三角函数的图象与性质,即可求出f(x)在区间[0,$\frac{2π}{3}$]上的最小值.

解答 解:(Ⅰ)函数f(x)=4sin$\frac{x}{2}$sin($\frac{x}{2}$+$\frac{π}{6}$)+2$\sqrt{3}$(cosx-1)
=4sin$\frac{x}{2}$($\frac{\sqrt{3}}{2}$sin$\frac{x}{2}$+$\frac{1}{2}$cos$\frac{x}{2}$)+2$\sqrt{3}$(cosx-1)
=2$\sqrt{3}$sin2$\frac{x}{2}$+2sin$\frac{x}{2}$cos$\frac{x}{2}$+2$\sqrt{3}$(cosx-1)
=$\sqrt{3}$(1-cosx)+sinx+2$\sqrt{3}$(cosx-1)
=sinx+$\sqrt{3}$cosx-$\sqrt{3}$
=2sin(x+$\frac{π}{3}$)-$\sqrt{3}$;
∴f(x)的最小正周期为T=2π;
(Ⅱ)∵0≤x≤$\frac{2π}{3}$,∴$\frac{π}{3}$≤x+$\frac{π}{3}$≤π,
当x+$\frac{π}{3}$=π时,即x=$\frac{2π}{3}$时,f(x)取得最小值,
∴f(x)在区间[0,$\frac{2π}{3}$]上的最小值是f($\frac{2π}{3}$)=2sin($\frac{2π}{3}$+π)-$\sqrt{3}$=-$\sqrt{3}$.

点评 本题考查了三角函数的化简以及三角函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知双曲线的一个焦点的坐标是($\sqrt{13}$,0),且过点(3,0),
(1)求双曲线的方程;
(2)已知经过点E(1,2)的直线l与双曲线交于A,B两点,使得$\overrightarrow{AE}$=$\overrightarrow{EB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.输入一个数x,求出数y=$\sqrt{|x|}$的函数值,请设计程序框图并编写程序.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设有两个三元素的集合为M1={-3,x+1,x2},M2={x-3,2x-1,x2+1},若M1∩M2={-3},则x的值为(  )
A.2B.0C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点O为坐标原点,点A,B,C不共线,且$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$),λ∈R,则点P的轨迹是∠BAC的角平分线所在直线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知(x-2)(x+2)+y2=0,则3xy的最小值为(  )
A.-2B.2C.-6D.-6$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设全集U=R,若集合A={x∈N||x-2|<3},B={x|y=lg(9-x2)},则A∩∁RB(  )
A.{x|-1<x<3}B.{x|3≤x<5}C.{0,1,2}D.{3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若tanα=-$\frac{3}{4}$,α是第二象限的角,则$\sqrt{2}$cos(α-$\frac{π}{4}$)=(  )
A.-$\frac{1}{5}$B.-$\frac{7}{5}$C.$\frac{1}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.平面α∩平面β=l,点A∈α,点B∈β,且B∉l,点C∈α,又AC∩l=R,过A、B、C 三点确定的平面为γ,则β∩γ是(  )
A.直线CRB.直线BRC.直线ABD.直线BC

查看答案和解析>>

同步练习册答案