精英家教网 > 高中数学 > 题目详情
18.已知全集U=R,集合A={x|x2+x>0},集合B=$\{y|y=\frac{2}{{{2^x}+1}},x∈R\}$,则(∁UA)∪B=(  )
A.[0,2)B.[-1,0]C.[-1,2)D.(-∞,2)

分析 运用二次不等式的解法,求得A,运用指数函数的值域和不等式的性质,化简集合B,再由补集和并集的定义,即可得到所求集合.

解答 解:集合A={x|x2+x>0}
={x|x>0或x<-1},
集合B=$\{y|y=\frac{2}{{{2^x}+1}},x∈R\}$
={y|0<y<2},
则(∁UA)∪B={x|-1≤x≤0}∪{y|0<y<2}
=[-1,0]∪(0,2)=[-1,2).
故选:C.

点评 本题考查集合的并集和补集的运算,同时考查二次不等式的解法和指数函数的值域的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2sin(ωx+φ)(ω>0,-π<φ<0)在区间$[{\frac{π}{6},\frac{π}{2}}]$上单调递增,且函数值从-2增大到0.若${x_1}_{\;}、{x_2}∈[{-\frac{π}{6},\frac{π}{2}}]$,且f(x1)=f(x2),则f(x1+x2)=(  )
A.$-\sqrt{2}$B.$\sqrt{2}$C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔15000m,速度为1000km/h,飞行员先看到山顶的俯角为15°,经过108s后又看到山顶的俯角为75°,则山顶的海拔高度为6340m.(取$\sqrt{3}$=1.732)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数学老师从6道习题中随机抽3道让同学检测,规定至少要解答正确2道题才能及格.某同学只能求解其中的4道题,则他能及格的概率是$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线l与椭圆C:$\frac{{x}^{2}}{8}$$+\frac{{y}^{2}}{4}$=1相交于A,B两点,若直线l的方程为x-2y+1=0,则线段AB的中点坐标是(  )
A.(-$\frac{1}{3}$,-$\frac{1}{2}$)B.($\frac{1}{3}$,-$\frac{1}{3}$)C.(1,1)D.(-$\frac{1}{3}$,$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设数列{an}的前n项和为Sn,满足Sn=2an-2,则$\frac{a_8}{a_6}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.电商中“猫狗大战”在节日期间的竞争异常激烈,在刚过去的618全民年中购物节中,某东当日交易额达1195亿元,现从该电商“剁手党”中随机抽取100名顾客进行回访,按顾客的年龄分成了6组,得到如下所示的频率直方图.
(1)求顾客年龄的众数,中位数,平均数(每一组数据用中点做代表);
(2)用样本数据的频率估计总体分布中的概率,则从全部顾客中任取3人,记随机变量X为顾客中年龄小于25岁的人数,求随机变量X的分布列以及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,最小正周期为π且为奇函数的是(  )
A.y=sin$\frac{x}{2}$B.y=cos$\frac{x}{2}$C.y=cos2xD.y=sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为了得到函数y=2sin($\frac{x}{3}$+$\frac{π}{6}$),x∈R的图象,只需要把函数y=2sinx,x∈R的图象上所有的点(  )
A.向左平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短为原来的$\frac{1}{3}$倍(纵坐标不变)
B.向右平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短为原来的$\frac{1}{3}$倍(纵坐标不变)
C.向左平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短为原来的3倍(纵坐标不变)
D.向右平移$\frac{π}{6}$个单位,再把所得各点的横坐标缩短为原来的3倍(纵坐标不变)

查看答案和解析>>

同步练习册答案