精英家教网 > 高中数学 > 题目详情
8.若 2x,x+1,x+2成等差数列,x=0.

分析 由已知条件直接利用等差数列的性质求解.

解答 解:∵2x,x+1,x+2成等差数列,
∴2(x+1)=2x+x+2
解得x=0.
故答案为:0.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(1,-1),$\overrightarrow{c}$=(-1,2),则$\overrightarrow{c}$=$\frac{1}{2}$$\overrightarrow{a}$-$\frac{3}{2}$$\overrightarrow{b}$(用$\overrightarrow{a}$,$\overrightarrow{b}$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.2$\sqrt{3}$B.$\frac{5\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|1≤x≤6},关于x的二次方程:$\frac{1}{4}$x2+$\sqrt{b}$x+2c=0.
请回答下列问题:
(Ⅰ)若b,c∈A,且c,c∈Z,求该二次方程有解的概率;
(Ⅱ)若b,c∈A,求该二次方程有解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设α是锐角,若sin(α+$\frac{π}{3}$)=$\frac{4}{5}$+sinα,则cos(2α-$\frac{π}{6}$)=(  )
A.$\frac{12}{25}$B.$\frac{24}{25}$C.-$\frac{24}{25}$D.-$\frac{12}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.执行如图的程序框图,若输入k的值为5,则输出S的值为30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列数列{bn}满足bn+1=$\frac{1}{2}$bn+$\frac{1}{4}$,且b1=$\frac{7}{2}$,Tn为{bn}的前n项和.
(1)求证:数列{bn-$\frac{1}{2}$}是等比数列并求数列{bn}的通项公式;
(2)如果对任意n∈N*,不等式$\frac{2{T}_{n}+3•{2}^{2-n}-10}{k}$≤n2+4n+5若恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x∈R,y为纯虚数,若(x-y)i=2-i,则x+y等于(  )
A.1B.-1-2iC.-1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.从4,5,6这三个数中,任选2个数组成集合,写出全体基本事件.

查看答案和解析>>

同步练习册答案