精英家教网 > 高中数学 > 题目详情
20.若$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(1,-1),$\overrightarrow{c}$=(-1,2),则$\overrightarrow{c}$=$\frac{1}{2}$$\overrightarrow{a}$-$\frac{3}{2}$$\overrightarrow{b}$(用$\overrightarrow{a}$,$\overrightarrow{b}$表示)

分析 利用向量共线,列出方程求解即可.

解答 解:$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,
可得:(-1,2)=x(1,1)+y(1,-1).
$\left\{\begin{array}{l}{x+y=-1}\\{x-y=2}\end{array}\right.$,解得x=$\frac{1}{2}$,y=$-\frac{3}{2}$.
可得$\overrightarrow{c}$=$\frac{1}{2}$$\overrightarrow{a}$-$\frac{3}{2}$$\overrightarrow{b}$,
故答案为:$\frac{1}{2}$$\overrightarrow{a}$-$\frac{3}{2}$$\overrightarrow{b}$,

点评 本题考查平面向量的基本定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,an>0,其前n项和Sn满足Sn2-(n2+2n-1)Sn-(n2+2n)=0.
(Ⅰ) 求{an}的通项公式an
(Ⅱ) 若bn=$\frac{{a}_{n}-5}{{2}^{n}}$,求b2+b4+…+b2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在复平面内,复数$\frac{i}{1+i}$+(1+2i)2的共轭复数对应的点位于第三象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知x、y∈R+,且xy=2,求2x+y的最小值及此时x、y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.下表是某地区的一种传染病与饮用水的调查表:
得病不得病合计
干净水52466518
不干净水94218312
合计146684830
判断能否以99.9%的把握认为“该地区的传染病与饮用不干净的水有关”
参考数据:
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.
(1)证明:A=2B;
(2)若cosB=$\frac{2}{3}$,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=cos2x+$\sqrt{3}$sinxcosx+1,x∈R,
(1)求f(x)最小正周期
(2)求f(x)的值域;
(3)求这个函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若 2x,x+1,x+2成等差数列,x=0.

查看答案和解析>>

同步练习册答案