精英家教网 > 高中数学 > 题目详情
11.在复平面内,复数$\frac{i}{1+i}$+(1+2i)2的共轭复数对应的点位于第三象限.

分析 利用复数代数形式的乘除运算化简,求出复数$\frac{i}{1+i}$+(1+2i)2的共轭复数对应的点的坐标得答案.

解答 解:由$\frac{i}{1+i}$+(1+2i)2 =$\frac{i(1-i)}{(1+i)(1-i)}+1+4i+4{i}^{2}=\frac{1+i}{2}+1+4i-4$=$-\frac{5}{2}+\frac{9}{2}i$,
∴复数$\frac{i}{1+i}$+(1+2i)2的共轭复数为$-\frac{5}{2}-\frac{9}{2}i$,对应的点的坐标为($-\frac{5}{2},-\frac{9}{2}$),位于第三象限.
故答案为:三.

点评 本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设n(S)表示集合S中元素的个数,定义A•B=$\left\{\begin{array}{l}{n(A),n(A)≥n(B)}\\{n(B),n(A)<n(B)}\end{array}\right.$,已知A={x||x-a|=1},B={x||x2-2x-3|=a-1},若A•B=2,则实数a的范围(-∞,1]∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,已知四边形ABCD是圆柱的轴截面,M是下底面圆周上不与点A,B重合的点.
(1)求证:平面DMB⊥平面DAM;
(2)若△AMB是等腰三角形,求该圆柱与三棱锥D-AMB体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.双曲线C与椭圆$\frac{x^2}{9}$+$\frac{y^2}{5}$=1有公共焦点,且C的一条渐近线方程为x+$\sqrt{3}$y=0,则C的方程为$\frac{x^2}{3}-{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知直线l1:x+2y-1=0和l2:x-2ay-a=0,若l1∥l2,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=x3-ax-b,x∈R,其中a,b∈R.
(1)求f(x)的单调区间;
(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;
(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[-1,1]上的最大值不小于$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a>b>1,若logab+logba=$\frac{5}{2}$,ab=ba,则a=4,b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(1,-1),$\overrightarrow{c}$=(-1,2),则$\overrightarrow{c}$=$\frac{1}{2}$$\overrightarrow{a}$-$\frac{3}{2}$$\overrightarrow{b}$(用$\overrightarrow{a}$,$\overrightarrow{b}$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.2$\sqrt{3}$B.$\frac{5\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案