精英家教网 > 高中数学 > 题目详情
12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.
(1)证明:A=2B;
(2)若cosB=$\frac{2}{3}$,求cosC的值.

分析 (1)由b+c=2acosB,利用正弦定理可得:sinB+sinC=2sinAcosB,而sinC=sin(A+B)=sinAcosB+cosAsinB,代入化简可得:sinB=sin(A-B),由A,B∈(0,π),可得0<A-B<π,即可证明.
(II)cosB=$\frac{2}{3}$,可得sinB=$\sqrt{1-co{s}^{2}B}$.cosA=cos2B=2cos2B-1,sinA=$\sqrt{1-co{s}^{2}A}$.利用cosC=-cos(A+B)=-cosAcosB+sinAsinB即可得出.

解答 (1)证明:∵b+c=2acosB,
∴sinB+sinC=2sinAcosB,
∵sinC=sin(A+B)=sinAcosB+cosAsinB,
∴sinB=sinAcosB-cosAsinB=sin(A-B),由A,B∈(0,π),
∴0<A-B<π,∴B=A-B,或B=π-(A-B),化为A=2B,或A=π(舍去).
∴A=2B.
(II)解:cosB=$\frac{2}{3}$,∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{5}}{3}$.
cosA=cos2B=2cos2B-1=$-\frac{1}{9}$,sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4\sqrt{5}}{9}$.
∴cosC=-cos(A+B)=-cosAcosB+sinAsinB=$-\frac{2}{3}×(-\frac{1}{9})$+$\frac{\sqrt{5}}{3}$×$\frac{4\sqrt{5}}{9}$=$\frac{22}{27}$.

点评 本题考查了正弦定理、和差公式、倍角公式、同角三角函数基本关系式、诱导公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图所示,已知四边形ABCD是圆柱的轴截面,M是下底面圆周上不与点A,B重合的点.
(1)求证:平面DMB⊥平面DAM;
(2)若△AMB是等腰三角形,求该圆柱与三棱锥D-AMB体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a>b>1,若logab+logba=$\frac{5}{2}$,ab=ba,则a=4,b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(1,-1),$\overrightarrow{c}$=(-1,2),则$\overrightarrow{c}$=$\frac{1}{2}$$\overrightarrow{a}$-$\frac{3}{2}$$\overrightarrow{b}$(用$\overrightarrow{a}$,$\overrightarrow{b}$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是(-2,-4),半径是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点A是抛物线y=$\frac{1}{4}$x2的对称轴与准线的交点,点F为该抛物线的焦点,点P在抛物线上且满足|PF|=m|PA|,则m的最小值为-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x∈(0,$\frac{1}{2}$),求函数y=$\frac{1}{x}$+$\frac{8}{1-2x}$,当x=$\frac{1}{6}$最小值是18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.2$\sqrt{3}$B.$\frac{5\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列数列{bn}满足bn+1=$\frac{1}{2}$bn+$\frac{1}{4}$,且b1=$\frac{7}{2}$,Tn为{bn}的前n项和.
(1)求证:数列{bn-$\frac{1}{2}$}是等比数列并求数列{bn}的通项公式;
(2)如果对任意n∈N*,不等式$\frac{2{T}_{n}+3•{2}^{2-n}-10}{k}$≤n2+4n+5若恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案