精英家教网 > 高中数学 > 题目详情
(2012•绍兴模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,已知b=
3
a

(1)当c=1,且△ABC的面积为
3
4
时,求a
的值;
(2)当cosC=
3
3
时,求cos(B-A)
的值.
分析:(1)利用三角形的面积公式把表示出三角形ABC的面积,将已知的面积及b=
3
a代入,表示出sinC,再由c及b=
3
a,利用余弦定理表示出cosC,利用同角三角函数间的基本关系得到sin2C+cos2C=1,将表示出的sinC和cosC代入,列出关于a的方程,求出方程的解即可得到a的值;
(2)由b=
3
a及cosC的值,利用余弦定理得到c=
2
a,可得出b2=a2+c2,根据勾股定理的逆定理可得出三角形为直角三角形,B为直角,进而确定出sinB=1,再利用正弦定理化简b=
3
a,将sinB的值代入求出sinA的值,将B的度数代入所求的式子中,利用诱导公式化简得到所求式子等于sinA的值,由sinA的值即可得到所求式子的值.
解答:解:(1)∵△ABC的面积为
3
4
,b=
3
a,
1
2
absinC=
1
2
a•
3
a•sinC=
3
2
a2sinC=
3
4

∴sinC=
1
2a2
,(2分)
又c=1,b=
3
a,
∴由余弦定理得:c2=1=a2+b2-2abcosC=a2+3a2-2a•
3
acosC,即cosC=
4a2-1
2
3
a2
,(4分)
∵sin2C+cos2C=1,∴(
1
2a2
2+(
4a2-1
2
3
a2
2=1,(6分)
整理得:(a2-1)2=0,即a2-1=0,
解得:a=1;(7分)
(2)∵b=
3
a,cosC=
3
3

∴由余弦定理得:c2=a2+b2-2abcosC=a2+3a2-2a2=2a2,即c=
2
a,(9分)
又b=
3
a,∴b2=a2+c2,∴B=90°,(11分)
由b=
3
a,sinB=1,
利用正弦定理得:sinB=
3
sinA,即sinA=
3
3
,(13分)
则cos(B-A)=cos(90°-A)=sinA=
3
3
.(14分)
点评:此题属于解三角形的题型,涉及的知识有:正弦、余弦定理,三角形的面积公式,同角三角函数间的基本关系,勾股定理的逆定理,以及诱导公式的运用,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•绍兴模拟)已知F1,F2是椭圆
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左、右焦点,点P在椭圆上,且F1PF2=
π
2
,记线段PF1与Y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1:2,则该椭圆的离心率等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绍兴模拟)已知向量
a
b
c
满足|
a
|=|
b
|=
a
b
=2,(
a
-
c
)•(
b
-2
c
)=0,则|
b
-
c
|的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绍兴模拟)已知函数f(x)=e2x-2a
x
 
2
+2e2x
,其中e为自然对数的底数.
(I)若函数f(x)在[1,2]上为单调增函数,求实数a的取值范围;
(II)设曲线y=f(x)在点P(1,f(1))处的切线为l.试问:是否存在正实数a,使得函数y=f(x)的图象被点P分割成的两部分(除点P外)完全位于切线l的两侧?若存在,请求出a满足的条件,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绍兴模拟)已知(a-i
)
2
 
=-2i
,其中i是虚数单位,则实数a=(  )

查看答案和解析>>

同步练习册答案