精英家教网 > 高中数学 > 题目详情
数列满足+1,且,则=(   ).
A.55B.56   C.65    D.66
A

试题分析:由题意,得,∴,故选A.项和公式.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分8分.
如果数列同时满足:(1)各项均为正数,(2)存在常数k, 对任意都成立,那么,这样的数列我们称之为“类等比数列” .由此各项均为正数的等比数列必定是“类等比数列” .问:
(1)若数列为“类等比数列”,且k=(a2-a1)2,求证:a1、a2、a3成等差数列;
(2)若数列为“类等比数列”,且k=, a2、a4、a5成等差数列,求的值;
(3)若数列为“类等比数列”,且a1=a,a2=b(a、b为常数),是否存在常数λ,使得对任意都成立?若存在,求出λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列的前三项分别为,(其中为正常数)。设
(1)归纳出数列的通项公式,并证明数列不可能为等比数列;
(2)若=1,求的值;
(3)若=4,试证明:当时,

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2014·孝感模拟)已知函数f(x)是R上的单调增函数且为奇函数,数列{an}是等差数列,a3>0,则f(a1)+f(a3)+f(a5)的值(  )
A.恒为正数B.恒为负数
C.恒为0D.可以为正数也可以为负数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列1,1,2,1,1,2,3,2,1,1,2,3,4,3,2,1,…,则第100项为(   )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013·天津模拟)已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}满足b1=1,且点P(bn,bn+1)(n∈N*)在直线y=x+2上.
(1)求数列{an},{bn}的通项公式.
(2)求数列{an·bn}的前n项和Dn
(3)设cn=an·sin2-bn·cos2(n∈N*),求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某种汽车购买时费用为万元,每年应交保险费,养路费,保险费共 万元,汽车的维修费为:第一年万元,第二年万元,第三年万元,……,依次成等差数列逐年递增.
(1)设使用年该车的总费用(包括购车费用)为试写出的表达式;
(2)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列中,,且(,),则这个数列的______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为等差数列的前项和,,则=
A.B.
C.D.2

查看答案和解析>>

同步练习册答案