【题目】已知函数.
(1)若函数的图象在处的切线方程为,求,的值;
(2)若,,使成立,求的取值范围.
【答案】(1) .
(2).
【解析】分析:的图象在处的切线方程为,得出(1,)坐标带入中,及=,即可解出,的值
(2)构造函数,在上的最大值为,问题等价于:,不等式恒成立,构造 >进行解决问题
详解:,
(1),,
由,
得.
令,,
所以函数在上单调递增,又,所以.
(2)令,因为当时,函数在上单调递增,所以,
于是函数在上一定单调递增.
所以在上的最大值为.
于是问题等价于:,不等式恒成立.
记 ,
则.
当时,因为,,所以,
则在区间上单调递减,此时,,不合题意.
故必有.
若,由可知在区间上单调递减,
在此区间上,有,与恒成立矛盾.
故,这时,在上单调递增,
恒有,满足题设要求.
所以,即.
所以的取值范围为.
点晴:本题主要考察导数综合题:能成立恒成立问题,这类型题目主要就是最值问题,学会对问题的转化是关键,本题主要在做题的过程中构造函数后发现是解决本题的关键。
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2,求三棱锥C一A1DE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=sinωx(ω>0),将f(x)的图象向左平移 个单位从长度后,所得图象与原函数的图象重合,则ω的最小值为( )
A.
B.3
C.6
D.9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次抽样调查中测得样本的6组数据,得到一个变量关于的回归方程模型,其对应的数值如下表:
2 | 3 | 4 | 5 | 6 | 7 | |
(1)请用相关系数加以说明与之间存在线性相关关系(当时,说明与之间具有线性相关关系);
(2)根据(1)的判断结果,建立关于的回归方程并预测当时,对应的值为多少(精确到).
附参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:
,,相关系数公式为:.
参考数据:
,,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数g(x)的图象,则下列说法不正确的是()
A.函数g(x)的图象关于点对称
B.函数g(x)的周期是
C.函数g(x)在上单调递增
D.函数g(x)在上最大值是1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线与曲线交于两点.
(1)求直线l的普通方程和曲线的直角坐标方程;
(2)已知点的极坐标为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com