【题目】![]()
(本题满分15分)已知m>1,直线
,
椭圆
,
分别为椭圆
的左、右焦点.
(Ⅰ)当直线
过右焦点
时,求直线
的方程;
(Ⅱ)设直线
与椭圆
交于
两点,
,
的重心分别为
.若原点
在以线段
为直径的圆内,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】设椭圆
(
)的左、右焦点为
,右顶点为
,上顶点为
.已知
.
(1)求椭圆的离心率;
(2)设
为椭圆上异于其顶点的一点,以线段
为直径的圆经过点
,经过原点
的直线
与该圆相切,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标平面上的一列点
简记为
,若由
构成的数列
满足
,(其中
是与
轴正方向相同的单位向量),则称
为“
点列”.
(1)试判断:
,...是否为“
点列”?并说明理由.
(2)若
为“
点列”,且点
在点
的右上方.任取其中连续三点
,判断
的形状(锐角,直角,钝角三角形),并证明.
(3)若
为“
点列”,正整数
满足:
,且
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:
①3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值
单位:
与游玩时间
小时)满足关系式:
;
②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为
即累积经验值不变);
③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.
⑴当
时,写出累积经验值E与游玩时间t的函数关系式
,并求出游玩6小时的累积经验值;
⑵该游戏厂商把累积经验值E与游玩时间t的比值称为“玩家愉悦指数”,记作
;若
,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四面体ABCD中,平面DAC⊥底面ABC,
,AD=CD=
,O是AC的中点,E是BD的中点.
![]()
(1)证明:DO⊥底面ABC;
(2)求二面角D-AE-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是由非负整数组成的无穷数列,对每一个正整数
,该数列前
项的最大值记为
,第
项之后各项
的最小值记为
,记
.
(1)若数列
的通项公式为
,求数列
的通项公式;
(2)证明:“数列
单调递增”是“
”的充要条件;
(3)若
对任意
恒成立,证明:数列
的通项公式为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是抛物线
上一点,经过点
的直线
与抛物线
交于
、
两点(不同于点
),直线
、
分别交直线
于点
、
.
(1)求抛物线方程及其焦点坐标;
(2)求证:以
为直径的圆恰好经过原点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行购物抽奖活动,抽奖箱中放有编号分别为
的五个小球.小球除编号不同外,其余均相同.活动规则如下:从抽奖箱中随机抽取一球,若抽到的小球编号为
,则获得奖金
元;若抽到的小球编号为偶数,则获得奖金
元;若抽到其余编号的小球,则不中奖.现某顾客依次有放回的抽奖两次.
(1)求该顾客两次抽奖后都没有中奖的概率;
(2)求该顾客两次抽奖后获得奖金之和为
元的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com