【题目】已知
是抛物线
上一点,经过点
的直线
与抛物线
交于
、
两点(不同于点
),直线
、
分别交直线
于点
、
.
(1)求抛物线方程及其焦点坐标;
(2)求证:以
为直径的圆恰好经过原点.
【答案】(1)抛物线方程为
,焦点坐标为
;(2)证明见解析.
【解析】
(1)将点
的坐标代入抛物线
的方程,求出
的值,可得出抛物线
的方程,并求出抛物线
的焦点坐标;
(2)设
,
,
、
,设直线
的方程为
,其中
,将直线
的方程与抛物线
的方程联立,列出韦达定理,利用向量共线求出点
、
的坐标,然后将韦达定理代入
,利用向量数量积的坐标运算计算出
,即可证明出结论成立.
(1)将
代入
,得
,因此,抛物线方程为
,焦点坐标为
;
(2)设
,
,
、
.
因为直线
不经过点
,所以直线
一定有斜率,设直线
方程为
,
与抛物线方程联立得到
,消去
,得
,
则由韦达定理得
,
.
,
,
,
,即
,
显然,
,
,
,
则点
,同理可求得点
的坐标为
,
所以,![]()
,
,因此,以
为直径的圆过原点.
科目:高中数学 来源: 题型:
【题目】5G网络是第五代移动通信网络,其峰值理论传输速度可达每8秒1GB,比4G网络的传输速度快数百倍.举例来说,一部1G的电影可在8秒之内下载完成.随着5G技术的诞生,用智能终端分享3D电影、游戏以及超高画质(UHD)节目的时代正向我们走来.某手机网络研发公司成立一个专业技术研发团队解决各种技术问题,其中有数学专业毕业,物理专业毕业,其它专业毕业的各类研发人员共计1200人.现在公司为提高研发水平,采用分层抽样抽取400人按分数对工作成绩进行考核,并整理得如上频率分布直方图(每组的频率视为概率).
![]()
(1)从总体的1200名学生中随机抽取1人,估计其分数小于50的概率;
(2)研发公司决定对达到某分数以上的研发人员进行奖励,要求奖励研发人员的人数达到30%,请你估计这个分数的值;
(3)已知样本中有三分之二的数学专业毕业的研发人员分数不低于70分,样本中不低于70分的数学专业毕业的研发人员人数与物理及其它专业毕业的研发人员的人数和相等,估计总体中数学专业毕业的研发人员的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】![]()
(本题满分15分)已知m>1,直线
,
椭圆
,
分别为椭圆
的左、右焦点.
(Ⅰ)当直线
过右焦点
时,求直线
的方程;
(Ⅱ)设直线
与椭圆
交于
两点,
,
的重心分别为
.若原点
在以线段
为直径的圆内,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点
为圆
:
上一动点,过点
分别作
轴,
轴的垂线,垂足分别为
,
,连接
延长至点
,使得
,点
的轨迹记为曲线
.
![]()
(1)求曲线
的方程;
(2)若点
,
分别位于
轴与
轴的正半轴上,直线
与曲线
相交于
,
两点,试问在曲线
上是否存在点
,使得四边形
为平行四边形,若存在,求出直线
方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,动圆
与圆
外切,与圆
内切.
(1)求动圆圆心
的轨迹方程;
(2)直线
过点
且与动圆圆心
的轨迹交于
、
两点.是否存在
面积的最大值,若存在,求出
的面积;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知梯形
中,
,
,
,
,
是
上的点,![]()
是
的中点,沿
将梯形
折起,使平面
平面
.
![]()
(1)当
时,求证:
;
(2)记以
为顶点的三棱锥的体积为
,求
的最大值;
(3)当
取得最大值时,求二面角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A. “
”是“
”成立的充分不必要条件
B. 命题
,则![]()
C. 为了了解800名学生对学校某项教改试验的意见,用系统抽样的方法从中抽取一个容量为40的样本,则分组的组距为40
D. 已知回归直线的斜率的估计值为1.23,样本点的中心为
,则回归直线方程为
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com