【题目】如图,正六边形的中心为,对、、、、、、这七个点中的任意两点,以其中一点为起点、另一点为终点作向量.任取其中两个向量,以它们的数量积的绝对值作为随机变量.试求的概率分布列及其数学期望.
【答案】见解析
【解析】
所作出的向量数为,则可取对向量.设所取向量分别为、.由于,因此,可不考虑向量的方向.不妨令所取两向量的夹角均为它们所在直线的夹角(取值范围为),则任意两向量之间的夹角均属于集合,每个向量的模值属于集合,其中,模为1的个数为12,模为的个数为6,模为2的个数为3.
若,则它们之间的夹角必为,,其概率为.
若,则它们之间的夹角可能为或.当夹角为时,,其概率为;当夹角为时,,其概率为.
若,则它们之间的夹角可能为或.易知其概率分别为
,.
若,,则它们之间的夹角可能为或.易知其概率分别为
,.
若,,则它们之间的夹角可能为或.易知其概率分别为
,.
若,,则它们之间的夹角可能为或.易知其概率为
,.
从而,的概率分布列为表
0 | 1 | 2 | 3 | |||
故的数学期望.
科目:高中数学 来源: 题型:
【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:
土地使用面积(单位:亩) | 1 | 2 | 3 | 4 | 5 |
管理时间(单位:月) | 8 | 10 | 13 | 25 | 24 |
并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:
愿意参与管理 | 不愿意参与管理 | |
男性村民 | 150 | 50 |
女性村民 | 50 |
(1)求出相关系数的大小,并判断管理时间与土地使用面积是否线性相关?
(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?
(3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为,求的分布列及数学期望。
参考公式:
其中。临界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下是某地区不同身高的未成年男性的体重平均值表.
身高/ | 60 | 70 | 80 | 90 | 100 | 110 |
体重/ | 6.13 | 7.9 | 9.99 | 12.15 | 15.02 | 17.5 |
身高/ | 120 | 130 | 140 | 150 | 160 | 170 |
体重/ | 20.92 | 26.86 | 31.11 | 38.85 | 42.25 | 55.05 |
(1)给出两个回归方程:
①,②.通过计算,得到它们的相关指数分别是:,.试问哪个回归方程拟合效果更好?
(2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8为偏瘦,那么该地区某中学一男生身高为,体重为,他的体重是否正常?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高三年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见下表.
百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等级 | A | B | C | D |
规定:A,B,C三级为合格等级,D为不合格等级为了解该校高三年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.
按照,,,,的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示
求n和频率分布直方图中的x,y的值,并估计该校高一年级学生成绩是合格等级的概率;
根据频率分布直方图,求成绩的中位数精确到;
在选取的样本中,从A,D两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是A等级的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司共有职工1500人,其中男职工1050人,女职工450人.为调查该公司职工每周平均上网的时间,采用分层抽样的方法,收集了300名职工每周平均上网时间的样本数据(单位:小时)
男职工 | 女职工 | 总计 | |
每周平均上网时间不超过4个小时 | |||
每周平均上网时间超过4个小时 | 70 | ||
总计 | 300 |
(Ⅰ)应收集多少名女职工样本数据?
(Ⅱ)根据这300个样本数据,得到职工每周平均上网时间的频率分布直方图(如图所示),其中样本数据分组区间为:,,,,,.试估计该公司职工每周平均上网时间超过4小时的概率是多少?
(Ⅲ)在样本数据中,有70名女职工的每周平均上网时间超过4个小时.请将每周平均上网时间与性别的列联表补充完整,并判断是否有95%的把握认为“该公司职工的每周平均上网时间与性别有关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆:的左、右焦点分别为,,右顶点为,上顶点为,若,,成等比数列,椭圆上的点到焦点的距离的最大值为.
求椭圆的标准方程;
过该椭圆的右焦点作两条互相垂直的弦与,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,小圆圈表示网络结点,结点之间的连线表示它们之间有网线连接,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B发送信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为( )
A.19 B.20 C.24 D. 26
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】黄冈市的天气预报显示,大别山区在今后的三天中,每一天有强浓雾的概率为,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率:先利用计算器产生之间整数值的随机数,并用0,1,2,3,4,5表示没有强浓雾,用6,7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:
779 537 113 730 588 506 027 394 357 231
683 569 479 812 842 273 925 191 978 520
则这三天中至少有两天有强浓雾的概率近似为
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com