精英家教网 > 高中数学 > 题目详情
2.已知f(x)=|x+3|-|x-a|.
(Ⅰ)若a=2,求不等式f(x)≤0的解集;
(Ⅱ)若f(x)>2的解集为{x|x>5},求实数a的值.

分析 (Ⅰ)当a=2时,由不等式可得|x+3|≤|x-2|,两边平方求得x的范围,可得不等式f(x)≤0的解集.
(Ⅱ)依题意知f(5)=2,即|5-a|=6,解得a的值,再检验,可得结论.

解答 解:(Ⅰ)当a=2时,由f(x)≤0,得|x+3|≤|x-2|,两边平方得10x≤-5,∴$x≤-\frac{1}{2}$,
∴不等式f(x)≤0的解集为$(-∞,-\frac{1}{2}]$.
(Ⅱ)依题意知f(5)=2,∴|5+3|-|5-a|=2,即|5-a|=6,解得a=11或a=-1.
经检验,当a=-1时,不合题意,
∴实数a的值为11.

点评 本题主要考查绝对值不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.濮阳市黄河滩区某村2010年至2016年人均纯收入(单位:万元)的数据如下表:
年份 20102011 2012 2013 2014 2015 2016 
年份代号x 1 2 4 6
人均纯收入y2.9 3.3 3.6 4.4 4.8 5.2 5.9 
(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该村人均纯收入的变化情况,并预测该村2017年人均纯收入.
附:回归直线的斜率和截距的最小乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.读下面的流程图,若输入的值为-5时,输出的结果是(  )
A.-10B.-6C.2D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax3+x2(a∈R)在$x=-\frac{4}{3}$处取得极值
(1)确定a的值;
(2)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设变量x,y满足约束条件$\left\{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y≤a}\end{array}$,且目标函数z=y-2x的最小值为-7,则实数a等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知正项数列{an}满足a1=1,数列{bn}为等比数列,且an+1=bn•an,若${b_{11}}^2=2$,则a22=2${\;}^{\frac{21}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题:①半径为2,圆心角的弧度数为$\frac{1}{2}$的扇形的周长为5;
②若α、β为第三象限角,且α>β,则cosα>cosβ;
③若直线的斜率是-cosθ,则其倾斜角的取值范围是[$\frac{π}{4},\frac{π}{2}})∪({\frac{π}{2},\frac{3π}{4}}$];
④当x≠$\frac{kπ}{2}$(k∈Z))时,$\frac{sinx+tanx}{cosx+cotx}$的值恒正.其中正确的命题是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个几何体的正视图、侧视图和俯视图如图所示,若这个几何体的外接球的表面积为100π,则该几何体的体积为(  )
A.$36\sqrt{3}$B.$\frac{98}{3}$C.$\frac{116}{3}$D.$\frac{128}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.有5个男生和3个女生,从中选出5人担任5门不同学科的课代表,求分别符合下列条件的选法数:
(1)有女生但人数必须少于男生;
(2)男生甲必须包括在内,但不担任数学课代表;
(3)女生乙一定要担任语文课代表,男生丙只想担任数学课代表或物理课代表.

查看答案和解析>>

同步练习册答案