精英家教网 > 高中数学 > 题目详情
7.已知正项数列{an}满足a1=1,数列{bn}为等比数列,且an+1=bn•an,若${b_{11}}^2=2$,则a22=2${\;}^{\frac{21}{2}}$.

分析 根据等比数列的性质和累乘法即可求出.

解答 解:∵数列{bn}为等比数列且an+1=bn•an
∴bn=$\frac{{a}_{n+1}}{{a}_{n}}$,b112=b1b21=b2b20=…=b10b12=2
∴b1b2…b21=$\frac{{a}_{2}}{{a}_{1}}$•$\frac{{a}_{3}}{{a}_{2}}$…$\frac{{a}_{22}}{{a}_{21}}$=a22=2${\;}^{\frac{21}{2}}$,
故答案为:2${\;}^{\frac{21}{2}}$.

点评 本题考查了等比数列的通项公式及其性质、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.某三棱柱的三视图如图所示,该三棱柱的表面积为3+2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$\overrightarrow{OA}$=(1,1,0),$\overrightarrow{OB}$=(4,1,0),$\overrightarrow{OC}$=(4,5,-1),则向量$\overrightarrow{AB}$和$\overrightarrow{AC}$的夹角的余弦值是$\frac{3\sqrt{26}}{26}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=(x-2)(ax+b)为偶函数,且在(0,+∞)单调递增,则f(2-x)>0的解集为(  )
A.{x|-2<x<2}B.{x|x>2,或x<-2}C.{x|0<x<4}D.{x|x>4,或x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=|x+3|-|x-a|.
(Ⅰ)若a=2,求不等式f(x)≤0的解集;
(Ⅱ)若f(x)>2的解集为{x|x>5},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)求值C${\;}_{n}^{5-n}$+C${\;}_{n+1}^{9-n}$;
(2)已知$\frac{1}{{C}_{5}^{m}}$-$\frac{1}{{C}_{6}^{m}}$=$\frac{7}{10{C}_{7}^{m}}$,求C${\;}_{8}^{m}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的前n项和记为Sn,${S_n}=\frac{1}{3}({a_n}-1)(n∈{N^*})$,则an=(  )
A.${(-\frac{1}{2})^n}$B.$-\frac{1}{2^n}$C.$-{(-\frac{1}{2})^n}$D.$-{(\frac{1}{2})^{n-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知模为2的向量$\overrightarrow a$与单位向量$\overrightarrow b$的夹角为$\frac{2π}{3}$,则$(2\overrightarrow a-\overrightarrow b)•(\overrightarrow a+\overrightarrow b)$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{2^x},x≥0\\{log_2}(-x),x<0\end{array}$,则f(f(-2))=(  )
A.-1B.2C.1D.-2

查看答案和解析>>

同步练习册答案