精英家教网 > 高中数学 > 题目详情
18.已知$\overrightarrow{OA}$=(1,1,0),$\overrightarrow{OB}$=(4,1,0),$\overrightarrow{OC}$=(4,5,-1),则向量$\overrightarrow{AB}$和$\overrightarrow{AC}$的夹角的余弦值是$\frac{3\sqrt{26}}{26}$.

分析 首先利用有向线段的坐标求法分别求出向量$\overrightarrow{AB}$和$\overrightarrow{AC}$的坐标,然后利用数量积公式求夹角的余弦值.

解答 解:由已知$\overrightarrow{OA}$=(1,1,0),$\overrightarrow{OB}$=(4,1,0),$\overrightarrow{OC}$=(4,5,-1),得到向量$\overrightarrow{AB}$=(3,0,0),$\overrightarrow{AC}$=(3,4,-1),
所以向量$\overrightarrow{AB}$和$\overrightarrow{AC}$的夹角的余弦值为$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}$=$\frac{3×3+0+0}{3×\sqrt{{3}^{2}+{4}^{2}+{1}^{2}}}=\frac{3\sqrt{26}}{26}$;
故答案为:$\frac{{3\sqrt{26}}}{26}$.

点评 本题考查了有向线段的坐标以及利用数量积公式求空间向量的夹角;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.一个空间几何体的三视图如下,则这个空间几何体的体积是(  )
A.2+$\frac{4π}{3}$B.2+$\frac{π}{3}$C.1+$\frac{4π}{3}$D.10+8π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设A、B分别是复数z1、z2,在复平面上对应的两点,O为原点,若|z1+z2|=|z1-z2|,则∠AOB的大小为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设A(x1,y1),B(x2,y2),C(x3,y3)为平面上不共线的三点,则三角形ABC的面积为(  )
A.$\frac{1}{2}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|B.$\frac{1}{2}$$|\begin{array}{l}{{x}_{1}}&{{y}_{1}}&{1}\\{{x}_{2}}&{{y}_{2}}&{1}\\{{x}_{3}}&{{y}_{3}}&{1}\end{array}|$
C.$\frac{1}{2}$|$\overrightarrow{AB}$$•\overrightarrow{AC}$|D.$\frac{1}{2}$(cos|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.读下面的流程图,若输入的值为-5时,输出的结果是(  )
A.-10B.-6C.2D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.4名运动员参加4×100接力赛,根据平时队员训练的成绩,甲不能跑第一棒,乙不能跑第四棒,则不同的出场顺序有(  )
A.12种B.14种C.16种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax3+x2(a∈R)在$x=-\frac{4}{3}$处取得极值
(1)确定a的值;
(2)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知正项数列{an}满足a1=1,数列{bn}为等比数列,且an+1=bn•an,若${b_{11}}^2=2$,则a22=2${\;}^{\frac{21}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等差数列{an}中,a3+a8=-3,那么S10等于(  )
A.-9B.-11C.-13D.-15

查看答案和解析>>

同步练习册答案