精英家教网 > 高中数学 > 题目详情
17.设变量x,y满足约束条件$\left\{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y≤a}\end{array}$,且目标函数z=y-2x的最小值为-7,则实数a等于3.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合即可得到结论.

解答 解:由z=y-2x,则y=2x+z
作出不等式组对应的平面区域如图:
平移直线y=2x+z,由图象知当直线y=2x+z,经过点A时,直线y=2x+z的截距最小,此时z最小,
即此时z=y-2x=-7,
由$\left\{\begin{array}{l}{y-2x=-7}\\{x-y-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=5}\\{y=3}\end{array}\right.$,即A(5,3),
此时A也在y=a上,∴a=3,
故答案为:3.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且椭圆C上的点到椭圆右焦点F的最小距离为$\sqrt{2}$-1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F且不与坐标轴平行的直线l与椭圆C交于A,B两点,O为坐标原点,线段AB的中点为M,直线MP⊥AB,若P点的坐标为(x0,0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆Г:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F,点P(1,1),PF⊥x轴,椭圆Г上的两动点R,S关天原点对称,且$\overrightarrow{RP}$•$\overrightarrow{SP}$的最小值为-2.
(1)求椭圆Г的方程;
(2)过P作两条动直线l1、l2分别交Г于A,B和C,D,弦AB,CD的中点分别为M、N,若直线l1,l2的倾斜角互余,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设$\frac{1}{2}$<($\frac{1}{2}$)b<($\frac{1}{2}$)a,则下列不等关系成立的是(  )
A.aa<ab<baB.aa<ba<abC.ab<aa<baD.ab<ba<aa

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若$cosα=-\frac{3}{5}$,且$α∈[{\frac{π}{2},π}]$,则$cos({α-\frac{π}{4}})$=(  )
A.$\frac{{\sqrt{2}}}{10}$B.$-\frac{{\sqrt{2}}}{10}$C.$\frac{{7\sqrt{2}}}{10}$D.$-\frac{{7\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=|x+3|-|x-a|.
(Ⅰ)若a=2,求不等式f(x)≤0的解集;
(Ⅱ)若f(x)>2的解集为{x|x>5},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是(  )
A.72 cm3B.90 cm3C.108 cm3D.138 cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图是某几何体的三视图,图中小方格单位长度为1,则该几何体外接球的表面积为(  )
A.B.12πC.16πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设向量$\overrightarrow a=(x,2),\overrightarrow b=(-3,5)$,若$\overrightarrow a,\overrightarrow b$共线,则x=$-\frac{6}{5}$;若$\overrightarrow a⊥\overrightarrow b$,则x=$\frac{10}{3}$.

查看答案和解析>>

同步练习册答案